Browsing by Subject "Evolution and Development"
- Results Per Page
- Sort Options
Item Open Access Integrating genetics, geography, and local adaptation to understand ecotype formation in the yellow monkeyflower, Mimulus guttatus(2010) Lowry, David BryantSpeciation is a constantly ongoing process whereby reproductive isolating baririer build up over time until groups of organisms can no longer exchange genes with each other. Adaptation is thought to play a major role in the formation of these barriers, although the genetic mechanisms and geographic mode underlying the spread of barriers due to adaptive evolution is poorly understood. Critically, speciation may occur in stages through the formation of intermediate partially reproductively isolated groups. The idea of such widespread ecotypes has been the subject of great controversy over the last century. Even so, we have relatively little understanding about whether widespread ecotypes exist, wheather they are reproductively isolated, and how adaptive alleles are distributed among partially isolated groups. In this dissertation, I examined these issues in widespread coastal perennial and inland annual ecotypes of the yellow monkeyflower, Mimulus guttatus. First, I determined that coastal and inland populations comprise distinct ecotypic groups. I then determined that these ecotypes are adapted to their respective habitats through genetically based flowering time and salt tolerance differences. I assessed the genetic architecture of these adaptations through quantitative trait loci (QTL) analysis and determined the geographic distribution of the underlying alleles through latitudinally replicated mapping populations. I quantified the contribution of these loci to adaptation in the field through the incorporation of advance generation hybrids in reciprocal transplant experiments. In the process, I discovered a widespread chromosomal inversion to be involved in the adaptive flowering time and annual/perennial life-history shift among the ecotypes. Overall, the results of this study suggest that widespread reproductively isolated ecotypes can form through the spread adaptive standing genetic variation between habitats and that chromosomal rearrangements can integral to this process.
Item Open Access Selection and Constraint: Population Genetic Approaches to Understanding the Evolution of Sea Urchin Development(2011) Garfield, DavidChanges in the expression and function of genes active during metazoan development have played a critical role in the evolution of morphological differences between species and phyla, yet the origins of these changes remain poorly understood. What roles do positive and negative selection play in the evolution of development? How do evolutionary changes accumulate given the degree to which organisms are able to buffer the effects of environmental and genetic perturbations during development? The crucial insight of the Modern Evolutionary Synthesis was that divergence between species arises from variation within populations. Following this principle, I have made use of tools from quantitative and population genetics to investigate three central questions: 1) How much genetic variation is there in the networks of genes that underlie metazoan development? 2) What affect does developmental buffering have on the accumulation of selectable genetic variation? 3) To what extent does selection act to shape patterns of genetic variation among different kinds of genes and at different stages of development? I show that developmental systems can harbor extensive levels of genetic variation, and that the amount of genetic variation in individual genes at different stages of development is related to the extent to which variation in those genes is buffered by genetic interactions. I also show that while selection plays an active role in shaping genetic variation in development, the extent to which variation in a gene is visible to selection depends in predictable ways on a) the biological function of that gene and b) whether the mutations in question influence gene expression or protein function. My results as a whole demonstrate the utility of population level approaches to the study of the evolution of development, and provide key insights into the role that selection plays in generating developmental variation.
Item Open Access Theoretical and Emperical Investigations into Adaptation(2010) Wright, Kevin MatthewThe problem is two fold: how does natural selection operate on systems of interacting genes and how does natural selection operate in natural populations. To address the first problem, I have conducted a theoretical investigation into the evolution of control and the distribution of mutations in a simple system of interacting genes, a linear metabolic pathway. I found that control is distributed unevenly between enzymes, with upstream enzymes possessing the greatest control and accumulating the most beneficial mutations during adaptive evolution. To address the second problem, I investigated the evolution of copper tolerance in the common yellow monkeyflower, Mimulus guttatus. I genetically mapped a major locus controlling copper tolerance, Tol1. A Dobzhansky-Muller incompatibility was hypothesized to also be controlled by Tol1, however, we have demonstrated that it maps to another, tightly linked locus, Nec1. Finally, we investigated the parallel evolution of copper tolerance in multiple new discovered mine populations. We found that copper tolerance has evolved in parallel multiple times via at least two distinct physiological mechanisms. In four mine populations, there was a strong signal of selection at markers linked to Tol1, implying that copper tolerance has evolved via the same genetic mechanisms in these populations.
Item Open Access Zebrafish Cardiac Development Requires a Conserved Secondary Heart Field(2011) Hami, DanyalDespite its lack of septation, the tissue patterning of the arterial pole of the zebrafish is remarkably similar to the patterning of pulmonary and aortic arterial poles observed in mouse and chick. The secondary heart field (SHF) is a conserved developmental domain in avian and mammalian embryos that contributes myocardium and smooth muscle to the cardiac arterial pole. This field is part of the overall heart field, and its myocardial component has been fate mapped from the mesoderm to the heart in both mammals and birds. In this study I demonstrate that the population that gives rise to the arterial pole of the zebrafish can be traced from the epiblast, is a discrete part of the mesodermal heart field. This zebrafish SHF contributes myocardium after initial heart tube formation, giving rise to both smooth muscle and myocardium. I show that this field expresses Isl1, a transcription factor associated with the SHF in other species. I further show that differentiation, induced by Bmp signaling, occurs in this progenitor population as cells are added to the heart tube. Some molecular pathways required for SHF development in birds and mammals are conserved in teleosts, as Nkx2.5 and Nkx2.7 as well as Fgf8 regulate Bmp signaling in the zebrafish heart fields. Additionally, the transcription factor Tbx1 and the Sonic hedgehog pathway are necessary for normal development of the zebrafish arterial pole.