Browsing by Subject "Exploratory Behavior"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Open Access Altered ultrasonic vocalization and impaired learning and memory in Angelman syndrome mouse model with a large maternal deletion from Ube3a to Gabrb3.(PLoS One, 2010-08-20) Jiang, Yong-Hui; Pan, Yanzhen; Zhu, Li; Landa, Luis; Yoo, Jong; Spencer, Corinne; Lorenzo, Isabel; Brilliant, Murray; Noebels, Jeffrey; Beaudet, Arthur LAngelman syndrome (AS) is a neurobehavioral disorder associated with mental retardation, absence of language development, characteristic electroencephalography (EEG) abnormalities and epilepsy, happy disposition, movement or balance disorders, and autistic behaviors. The molecular defects underlying AS are heterogeneous, including large maternal deletions of chromosome 15q11-q13 (70%), paternal uniparental disomy (UPD) of chromosome 15 (5%), imprinting mutations (rare), and mutations in the E6-AP ubiquitin ligase gene UBE3A (15%). Although patients with UBE3A mutations have a wide spectrum of neurological phenotypes, their features are usually milder than AS patients with deletions of 15q11-q13. Using a chromosomal engineering strategy, we generated mutant mice with a 1.6-Mb chromosomal deletion from Ube3a to Gabrb3, which inactivated the Ube3a and Gabrb3 genes and deleted the Atp10a gene. Homozygous deletion mutant mice died in the perinatal period due to a cleft palate resulting from the null mutation in Gabrb3 gene. Mice with a maternal deletion (m-/p+) were viable and did not have any obvious developmental defects. Expression analysis of the maternal and paternal deletion mice confirmed that the Ube3a gene is maternally expressed in brain, and showed that the Atp10a and Gabrb3 genes are biallelically expressed in all brain sub-regions studied. Maternal (m-/p+), but not paternal (m+/p-), deletion mice had increased spontaneous seizure activity and abnormal EEG. Extensive behavioral analyses revealed significant impairment in motor function, learning and memory tasks, and anxiety-related measures assayed in the light-dark box in maternal deletion but not paternal deletion mice. Ultrasonic vocalization (USV) recording in newborns revealed that maternal deletion pups emitted significantly more USVs than wild-type littermates. The increased USV in maternal deletion mice suggests abnormal signaling behavior between mothers and pups that may reflect abnormal communication behaviors in human AS patients. Thus, mutant mice with a maternal deletion from Ube3a to Gabrb3 provide an AS mouse model that is molecularly more similar to the contiguous gene deletion form of AS in humans than mice with Ube3a mutation alone. These mice will be valuable for future comparative studies to mice with maternal deficiency of Ube3a alone.Item Open Access Axonal regrowth after spinal cord injury via chondroitinase and the tissue plasminogen activator (tPA)/plasmin system.(The Journal of neuroscience : the official journal of the Society for Neuroscience, 2011-10) Bukhari, Noreen; Torres, Luisa; Robinson, John K; Tsirka, Stella ESpinal cord injury (SCI) causes permanent debilitation due to the inability of axons to grow through established scars. Both the sugar chains and core proteins of chondroitin sulfate proteoglycans (CSPGs) are inhibitory for neurite regrowth. Chondroitinase ABC (ChABC) degrades the sugar chains and allows for synaptic plasticity, suggesting that after the sugar chain cleavage additional steps occur promoting a permissive microenvironment in the glial scar region. We report that the clearance of the core protein by the tissue plasminogen activator (tPA)/plasmin proteolytic system partially contributes to ChABC-promoted plasticity. tPA and plasmin are upregulated after SCI and degrade the deglycosylated CSPG proteins. Mice lacking tPA (tPA(-/-)) exhibit attenuated neurite outgrowth and blunted sensory and motor recovery despite ChABC treatment. Coadministration of ChABC and plasmin enhanced the tPA(-/-) phenotype and supported recovery in WT SCI mice. Collectively, these findings show that the tPA/plasmin cascade may act downstream of ChABC to allow for synergistic sensory and motor improvement compared with each treatment alone and suggest a potential new approach to enhance functional recovery after SCI.Item Open Access Critical developmental periods for effects of low-level tobacco smoke exposure on behavioral performance.(Neurotoxicology, 2018-09) Cauley, Marty; Hall, Brandon J; Abreu-Villaça, Yael; Junaid, Shaqif; White, Hannah; Kiany, Abtin; Slotkin, Theodore A; Levin, Edward DTobacco exposure during development leads to neurobehavioral dysfunction in children, even when exposure is limited to secondhand smoke. We have previously shown in rats that developmental exposure to tobacco smoke extract (TSE), at levels mimicking secondhand smoke, starting preconception and extending throughout gestation, evoked subsequent locomotor hyperactivity and cognitive impairment. These effects were greater than those caused by equivalent exposures to nicotine alone, implying that other agents in tobacco smoke contributed to the adverse behavioral effects. In the present study, we examined the critical developmental windows of vulnerability for these effects, restricting TSE administration (0.2 mg/kg/day nicotine equivalent, or DMSO vehicle, delivered by subcutaneously-implanted pumps) to three distinct 10 day periods: the 10 days preceding mating, the first 10 days of gestation (early gestation), or the second 10 days of gestation (late gestation). The principal behavioral effects revealed a critical developmental window of vulnerability, as well as sex selectivity. Late gestational TSE exposure significantly increased errors in the initial training on the radial-arm maze in female offspring, whereas no effects were seen in males exposed during late gestation, or with either sex in the other exposure windows. In attentional testing with the visual signal detection test, male offspring exposed to TSE during early or late gestation showed hypervigilance during low-motivating conditions. These results demonstrate that gestational TSE exposure causes persistent behavioral effects that are dependent on the developmental window in which exposure occurs. The fact that effects were seen at TSE levels modeling secondhand smoke, emphasizes the need for decreasing involuntary tobacco smoke exposure, particularly during pregnancy.Item Open Access Developmental exposure to a complex PAH mixture causes persistent behavioral effects in naive Fundulus heteroclitus (killifish) but not in a population of PAH-adapted killifish.(Neurotoxicol Teratol, 2016-01) Brown, DR; Bailey, JM; Oliveri, AN; Levin, ED; Di Giulio, RTAcute exposures to some individual polycyclic aromatic hydrocarbons (PAHs) and complex PAH mixtures are known to cause cardiac malformations and edema in the developing fish embryo. However, the heart is not the only organ impacted by developmental PAH exposure. The developing brain is also affected, resulting in lasting behavioral dysfunction. While acute exposures to some PAHs are teratogenically lethal in fish, little is known about the later life consequences of early life, lower dose subteratogenic PAH exposures. We sought to determine and characterize the long-term behavioral consequences of subteratogenic developmental PAH mixture exposure in both naive killifish and PAH-adapted killifish using sediment pore water derived from the Atlantic Wood Industries Superfund Site. Killifish offspring were embryonically treated with two low-level PAH mixture dilutions of Elizabeth River sediment extract (ERSE) (TPAH 5.04 μg/L and 50.4 μg/L) at 24h post fertilization. Following exposure, killifish were raised to larval, juvenile, and adult life stages and subjected to a series of behavioral tests including: a locomotor activity test (4 days post-hatch), a sensorimotor response tap/habituation test (3 months post hatch), and a novel tank diving and exploration test (3months post hatch). Killifish were also monitored for survival at 1, 2, and 5 months over 5-month rearing period. Developmental PAH exposure caused short-term as well as persistent behavioral impairments in naive killifish. In contrast, the PAH-adapted killifish did not show behavioral alterations following PAH exposure. PAH mixture exposure caused increased mortality in reference killifish over time; yet, the PAH-adapted killifish, while demonstrating long-term rearing mortality, had no significant changes in mortality associated with ERSE exposure. This study demonstrated that early embryonic exposure to PAH-contaminated sediment pore water caused long-term locomotor and behavioral alterations in killifish, and that locomotor alterations could be observed in early larval stages. Additionally, our study highlights the resistance to behavioral alterations caused by low-level PAH mixture exposure in the adapted killifish population. Furthermore, this is the first longitudinal behavioral study to use killifish, an environmentally important estuarine teleost fish, and this testing framework can be used for future contaminant assessment.Item Open Access Effects of sub-chronic methylphenidate on risk-taking and sociability in zebrafish (Danio rerio).(Naunyn-Schmiedeberg's archives of pharmacology, 2020-08) Brenner, Rebecca G; Oliveri, Anthony N; Sinnott-Armstrong, Walter; Levin, Edward DAttention deficit hyperactive disorder (ADHD) is the most common psychiatric disorder in children affecting around 11% of children 4-17 years of age (CDC 2019). Children with ADHD are widely treated with stimulant medications such as methylphenidate (Ritalin®). However, there has been little research on the developmental effects of methylphenidate on risk-taking and sociability. We investigated in zebrafish the potential developmental neurobehavioral toxicity of methylphenidate on these behavioral functions. We chose zebrafish because they provide a model with extensive genetic tools for future mechanistic studies. We studied whether sub-chronic methylphenidate exposure during juvenile development causes neurobehavioral impairments in zebrafish. Methylphenidate diminished responses to environmental stimuli after both acute and sub-chronic dosing. In adult zebrafish, acute methylphenidate impaired avoidance of an approaching visual stimulus modeling a predator and decreased locomotor response to the social visual stimulus of conspecifics. Adult zebrafish dosed acutely with methylphenidate demonstrated behaviors of less retreat from threatening visual stimuli and less approach to conspecifics compared with controls. In a sub-chronic dosing paradigm during development, methylphenidate caused less robust exploration of a novel tank. In the predator avoidance paradigm, sub-chronic dosing that began at an older age (28 dpf) decreased activity levels more than sub-chronic dosing that began at earlier ages (14 dpf and 21 dpf). In the social shoaling task, sub-chronic methylphenidate attenuated reaction to the social stimulus. Acute and developmental methylphenidate exposure decreased response to environmental cues. Additional research is needed to determine critical mechanisms for these effects and to see how these results may be translatable to neurobehavioral toxicity of prescribing Ritalin® to children and adolescents.