Browsing by Subject "Fibrin"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Effect of apixaban compared with warfarin on coagulation markers in atrial fibrillation.(Heart (British Cardiac Society), 2019-02) Christersson, Christina; Wallentin, Lars; Andersson, Ulrika; Alexander, John H; Alings, Marco; De Caterina, Raffaele; Gersh, Bernard J; Granger, Christopher B; Halvorsen, Sigrun; Hanna, Michael; Huber, Kurt; Hylek, Elaine M; Lopes, Renato D; Oh, Byung-Hee; Siegbahn, AgnetaObjectives
Compare the effect of apixaban and warfarin on coagulation and primary haemostasis biomarkers in atrial fibrillation (AF).Methods
The biomarker substudy from the Apixaban for Reduction in Stroke and Other Thromboembolic Events in Atrial Fibrillation trial included 4850 patients with AF randomised to treatment with apixaban or warfarin. Sixty per cent of patients used vitamin K antagonist (VKA) within 7 days before randomisation. Prothrombin fragment 1+2 (F1+2), D-dimer, soluble CD40 ligand (sCD40L) and von Willebrand factor (vWF) antigen were analysed at randomisation and after 2 months of study treatment.Results
In patients not on VKA treatment at randomisation, F1+2 and D-dimer levels were decreased by 25% and 23%, respectively, with apixaban, and by 59% and 38%, respectively, with warfarin (p<0.0001 for treatment differences for both). In patients on VKA at randomisation, F1+2 and D-dimer levels increased by 41% and 10%, respectively, with apixaban and decreased by 37% and 11%, respectively, with warfarin (p<0.0001 for treatment differences for both). sCD40L levels were slightly increased at 2 months, regardless of VKA or randomised treatment. Apixaban and warfarin also both reduced vWF antigen regardless of VKA treatment. The efficacy (stroke) and safety (bleeding) of apixaban compared with warfarin was similar irrespectively of biomarker levels at 2 months.Conclusions
Treatment with apixaban compared with warfarin for stroke prevention in patients with AF was associated with less reduction in thrombin generation and fibrin turnover. This effect of apixaban could contribute to the clinical results where apixaban was superior to warfarin both in stroke prevention and in reducing bleeding risk.Trial registration number
NCT00412984.Item Open Access Functional properties of cell-seeded three-dimensionally woven poly(epsilon-caprolactone) scaffolds for cartilage tissue engineering.(Tissue Eng Part A, 2010-04) Moutos, Franklin T; Guilak, FarshidArticular cartilage possesses complex mechanical properties that provide healthy joints the ability to bear repeated loads and maintain smooth articulating surfaces over an entire lifetime. In this study, we utilized a fiber-reinforced composite scaffold designed to mimic the anisotropic, nonlinear, and viscoelastic biomechanical characteristics of native cartilage as the basis for developing functional tissue-engineered constructs. Three-dimensionally woven poly(epsilon-caprolactone) (PCL) scaffolds were encapsulated with a fibrin hydrogel, seeded with human adipose-derived stem cells, and cultured for 28 days in chondrogenic culture conditions. Biomechanical testing showed that PCL-based constructs exhibited baseline compressive and shear properties similar to those of native cartilage and maintained these properties throughout the culture period, while supporting the synthesis of a collagen-rich extracellular matrix. Further, constructs displayed an equilibrium coefficient of friction similar to that of native articular cartilage (mu(eq) approximately 0.1-0.3) over the prescribed culture period. Our findings show that three-dimensionally woven PCL-fibrin composite scaffolds can be produced with cartilage-like mechanical properties, and that these engineered properties can be maintained in culture while seeded stem cells regenerate a new, functional tissue construct.Item Open Access Strong Binding of Platelet Integrin αIIbβ3 to Fibrin Clots: Potential Target to Destabilize Thrombi.(Scientific reports, 2017-10-11) Höök, Peter; Litvinov, Rustem I; Kim, Oleg V; Xu, Shixin; Xu, Zhiliang; Bennett, Joel S; Alber, Mark S; Weisel, John WThe formation of platelet thrombi is determined by the integrin αIIbβ3-mediated interactions of platelets with fibrinogen and fibrin. Blood clotting in vivo is catalyzed by thrombin, which simultaneously induces fibrinogen binding to αIIbβ3 and converts fibrinogen to fibrin. Thus, after a short time, thrombus formation is governed by αIIbβ3 binding to fibrin fibers. Surprisingly, there is little understanding of αIIbβ3 interaction with fibrin polymers. Here we used an optical trap-based system to measure the binding of single αIIbβ3 molecules to polymeric fibrin and compare it to αIIbβ3 binding to monomeric fibrin and fibrinogen. Like αIIbβ3 binding to fibrinogen and monomeric fibrin, we found that αIIbβ3 binding to polymeric fibrin can be segregated into two binding regimes, one with weaker rupture forces of 30-60 pN and a second with stronger rupture forces >60 pN that peaked at 70-80 pN. However, we found that the mechanical stability of the bimolecular αIIbβ3-ligand complexes had the following order: fibrin polymer > fibrin monomer > fibrinogen. These quantitative differences reflect the distinct specificity and underlying molecular mechanisms of αIIbβ3-mediated reactions, implying that targeting platelet interactions with fibrin could increase the therapeutic indices of antithrombotic agents by focusing on the destabilization of thrombi rather than the prevention of platelet aggregation.