Browsing by Subject "Fibrosis"
Results Per Page
Sort Options
Item Open Access Bladder fibrosis during outlet obstruction is triggered through the NLRP3 inflammasome and the production of IL-1β.(American journal of physiology. Renal physiology, 2017-09) Hughes, Francis M; Sexton, Stephanie J; Jin, Huixia; Govada, Vihasa; Purves, J ToddBladder outlet obstruction (BOO) triggers inflammation in the bladder through the NLRP3 inflammasome. BOO also activates fibrosis, which is largely responsible for the decompensation of the bladder in the chronic state. Because fibrosis can be driven by inflammation, we have explored a role for NLRP3 (and IL-1β produced by NLRP3) in the activation and progression of BOO-induced fibrosis. Female rats were divided into five groups: 1) control, 2) sham, 3) BOO + vehicle, 4) BOO + the NLRP3 inhibitor glyburide, or 5) BOO + the IL-1β receptor antagonist anakinra. Fibrosis was assessed by Masson's trichrome stain, collagen secretion via Sirius Red, and protein localization by immunofluorescence. BOO increased collagen production in the bladder, which was blocked by glyburide and anakinra, clearly implicating the NLRP3/IL-1β pathway in fibrosis. The collagen was primarily found in the lamina propria and the smooth muscle, while IL-1 receptor 1 and prolyl 4-hydroylase (an enzyme involved in the intracellular modification of collagen) both localized to the urothelium and the smooth muscle. Lysyl oxidase, the enzyme involved in the final extracellular assembly of mature collagen fibrils, was found to some extent in the lamina propria where its expression was greatly enhanced during BOO. In vitro studies demonstrated isolated urothelial cells from BOO rats secreted substantially more collagen than controls, and collagen expression in control cultures could be directly stimulated by IL-1β. In summary, NLRP3-derived-IL-1β triggers fibrosis during BOO, most likely through an autocrine loop in which IL-1β acts on urothelia to drive collagen production.Item Open Access C1q/Tumor Necrosis Factor-Related Protein-9 Regulates the Fate of Implanted Mesenchymal Stem Cells and Mobilizes Their Protective Effects Against Ischemic Heart Injury via Multiple Novel Signaling Pathways.(Circulation, 2017-11) Yan, Wenjun; Guo, Yongzhen; Tao, Ling; Lau, Wayne Bond; Gan, Lu; Yan, Zheyi; Guo, Rui; Gao, Erhe; Wong, G William; Koch, Walter L; Wang, Yajing; Ma, Xin-LiangBackground
Cell therapy remains the most promising approach against ischemic heart injury. However, the poor survival of engrafted stem cells in the ischemic environment limits their therapeutic efficacy for cardiac repair after myocardial infarction. CTRP9 (C1q/tumor necrosis factor-related protein-9) is a novel prosurvival cardiokine with significantly downregulated expression after myocardial infarction. Here we tested a hypothesis that CTRP9 might be a cardiokine required for a healthy microenvironment promoting implanted stem cell survival and cardioprotection.Methods
Mice were subjected to myocardial infarction and treated with adipose-derived mesenchymal stem cells (ADSCs, intramyocardial transplantation), CTRP9, or their combination. Survival, cardiac remodeling and function, cardiomyocytes apoptosis, and ADSCs engraftment were evaluated. Whether CTRP9 directly regulates ADSCs function was determined in vitro. Discovery-drive approaches followed by cause-effect analysis were used to uncover the molecular mechanisms of CTRP9.Results
Administration of ADSCs alone failed to exert significant cardioprotection. However, administration of ADSCs in addition to CTRP9 further enhanced the cardioprotective effect of CTRP9 (P<0.05 or P<0.01 versus CTRP9 alone), suggesting a synergistic effect. Administration of CTRP9 at a dose recovering physiological CTRP9 levels significantly prolonged ADSCs retention/survival after implantation. Conversely, the number of engrafted ADSCs was significantly reduced in the CTRP9 knockout heart. In vitro study demonstrated that CTRP9 promoted ADSCs proliferation and migration, and it protected ADSCs against hydrogen peroxide-induced cellular death. CTRP9 enhances ADSCs proliferation/migration by extracellular regulated protein kinases (ERK)1/2-matrix metallopeptidase 9 signaling and promotes antiapoptotic/cell survival via ERK-nuclear factor erythroid-derived 2-like 2/antioxidative protein expression. N-cadherin was identified as a novel CTRP9 receptor mediating ADSCs signaling. Blockade of either N-cadherin or ERK1/2 completely abolished the previously noted CTRP9 effects. Although CTRP9 failed to promote ADSCs cardiogenic differentiation, CTRP9 promotes superoxide dismutase 3 expression and secretion from ADSCs, protecting cardiomyocytes against oxidative stress-induced cell death.Conclusions
We provide the first evidence that CTRP9 promotes ADSCs proliferation/survival, stimulates ADSCs migration, and attenuates cardiomyocyte cell death by previously unrecognized signaling mechanisms. These include binding with N-cadherin, activation of ERK-matrix metallopeptidase 9 and ERK-nuclear factor erythroid-derived 2-like 2 signaling, and upregulation/secretion of antioxidative proteins. These results suggest that CTRP9 is a cardiokine critical in maintaining a healthy microenvironment facilitating stem cell engraftment in infarcted myocardial tissue, thereby enhancing stem cell therapeutic efficacy.Item Open Access Cellular and Molecular Mediators of Bronchiolitis Obliterans-like Pathological Changes in a Murine Model of Chlorine Gas Inhalation(2013) O'Koren, Emily GraceBronchiolitis Obliterans (BO) is a major cause of chronic airway dysfunction after toxic chemical inhalation. The pathophysiology of BO is not well understood, but epithelial cell injury has been closely associated with the development of fibrotic lesions in human studies and in animal models of both toxin- and transplant-induced BO. However, while almost all cases and models of BO include epithelial injury, not all instances of epithelial injury result in BO, suggesting that epithelial damage per se is not the critical event leading to the development of BO. In this dissertation, we describe a model of chlorine (Cl2)-induced BO in which mice develop tracheal and large airway obliterative lesions within 10 days of exposure to high (350 ppm), but not low (200 ppm), concentrations of Cl2 gas. Lesions develop in a series of well-demarcated pathological changes that include epithelial denudation, inflammatory cell infiltration by day 2 after exposure, fibroblast infiltration and collagen deposition by day 5, and in-growth of blood vessels by day 7, ultimately leading to lethal airway obstruction by days 9-12. Using this model, we were able to test our hypothesis that loss of epithelial progenitor cells is a critical factor leading to the development of obliterative airway lesions after chemical inhalation. Indeed, these lesions arise only under conditions and in areas in which basal cells, the resident progenitor cells for large airway epithelium, are eliminated by Cl2 exposure.
The molecular pathways contributing to BO development are not well understood. Mechanisms of epithelial injury differ across BO models, but we hypothesized that after the inciting injury, BO models share common pathways. We compared microarray analysis from day 5 non-BO- and BO-inducing chemical injuries and subsequently identified biological pathways that may contribute to BO pathogenesis. Our findings add support to pathways previously implicated in BO development and more importantly, suggest potential new pathways and molecular mediators of BO. Furthermore, we evaluated the efficacy of therapeutic inhibition of neovascularization or inflammation to prevent Cl2-induced BO. To date, our therapeutic interventions were ineffective. Nonetheless, our findings suggest that in the context of Cl2-induced BO, vascular endothelial growth factor receptor 2 (a mediator of neovascularization) and inducible nitric oxide synthase (a mediator of inflammation) are not critical in BO pathogenesis.
In sum, our work introduces and characterizes a novel Cl2-induced murine model of BO. Using this model we demonstrated that in the absence of basal cells, epithelial regeneration does not occur and regions of epithelial denudation persist from which an aberrant repair process is initiated, leading to obliterative airway lesions. Our findings suggest that, irrespective of the cause, loss of epithelial progenitor cells may be a critical factor leading to the development of BO. Furthermore, our gene expression analysis implicates novel mediators and signaling pathways in the development of BO. Our analysis lays the foundation for more rigorous exploration of these targets in the pathogenesis of BO.
Item Open Access Developing a Fibrotic Phenotype in a 3D Human Skeletal Muscle Microphysiological System(2022) Ananthakumar, AnanditaMuscle fibrosis is caused by muscle injury, dystrophy, sarcopenia, and rheumatoid arthritis. This condition is characterized by hardening and scarring, which impairs contractile muscle function. To understand how fibrotic disease affects muscular function, we created a model of human skeletal muscle fibrosis using three-dimensional engineered skeletal muscle (myobundles). Furthermore, to investigate the effect of skeletal muscle fibrosis on the vascular system, we integrated the fibrotic skeletal muscle with tissue engineered blood vessels. Treating myobundles with Transforming Growth Factor β1 (TGF-β1) reproduced key characteristics of fibrotic skeletal muscle including reduced contractile force, disrupted contractile protein organization, increased stiffness, and expression of profibrotic genes. Treatment with a selective inhibitor (SB525334) of TGF-β1 receptor (ALK5, TGF-βRI) increased contractile function and decreased ECM deposition, consistent with animal studies in the literature. We also observed endogenous secretion of TGF-β1 in our myobundles which is of novel biological significance. siRNA knockdown of TGF-β1 increased contractile force. Testing anti-fibrotic drug Nintedanib in this model, showed an increase in tetanus force production in 2 out of 3 donors and reduction of pro-fibrotic ECM accumulation of collagen 1 and fibronectin. Western blot analysis of Nintedanib also providence evidence of its inhibition of TGF-β1 signaling by the reduction of phosphorylated Smad2/3. Repositioned anti-fibrotic drug Suramin treatment of fibrotic myobundles resulted in increase of tetanus force production in all three donors and reduction of pro-fibrotic ECM accumulation of collagen 1 and fibronectin. Suramin’s influence on TGF-β1 signaling in our system was found not to be as targeted as Nintedanib as there was only reduction in Smad3 phosphorylation and not Smad2 phosphorylation. Anti-fibrotic drug testing in our model was also able to wean out donor specific sensitivity to the drugs with donor 3. Skeletal myobundles were integrated with Tissue Engineered Blood Vessels (TEBVs) to identify the effect of skeletal muscle fibrosis on blood vessels or the human vasculature. Integrated TEBVs with 5 ng/ml TGF-β1 dosed myobundles showed reduced function, increased mesenchymal markers such as vimentin and alpha smooth muscle actin, and increased endothelial cell inflammation. Our results suggest a detrimental effect of skeletal muscle fibrosis on blood vessels and show an interaction between the skeletal muscle fibrosis and the human vasculature This model provides a platform to study skeletal muscle fibrosis alone or its effect on the vasculature and allows for testing anti-fibrotic drugs and assessing myobundle function along with disease influence on human vasculature.
Item Open Access Epithelial injury and interstitial fibrosis in the proximal alveolar regions of rats chronically exposed to a simulated pattern of urban ambient ozone.(Toxicology and applied pharmacology, 1992-08) Chang, LY; Huang, Y; Stockstill, BL; Graham, JA; Grose, EC; Menache, MG; Miller, FJ; Costa, DL; Crapo, JDElectron microscopic morphometry was used to study the development of lung injury during and after chronic (78 weeks) exposure to a pattern of ozone (O3) designed to simulate high urban ambient concentrations that occur in some environments. The daily exposure regimen consisted of a 13-hr background of 0.06 ppm, an exposure peak that rose from 0.06 to 0.25 ppm, and returned to the background level over a 9-hr period, and 2-hr downtime for maintenance. Rats were exposed for 1, 3, 13, and 78 weeks. Additional groups of rats exposed for 13 or 78 weeks were allowed to recover in filtered clean air for 6 or 17 weeks, respectively. Rats exposed to filtered air for the same lengths of time were used as controls. Samples from proximal alveolar regions and terminal bronchioles were obtained by microdissection. Analysis of the proximal alveolar region revealed a biphasic response. Acute tissue reactions after 1 week of exposure included epithelial inflammation, interstitial edema, interstitial cell hypertrophy, and influx of macrophages. These responses subsided after 3 weeks of exposure. Progressive epithelial and interstitial tissue responses developed with prolonged exposure and included epithelial hyperplasia, fibroblast proliferation, and interstitial matrix accumulation. The epithelial responses involved both type I and type II epithelial cells. Alveolar type I cells increased in number, became thicker, and covered a smaller average surface area. These changes persisted throughout the entire exposure and did not change during the recovery period, indicating the sensitivity of these cells to injury. The main response of type II epithelial cells was cell proliferation. The accumulation of interstitial matrix after chronic exposure consisted of deposition of both increased amounts of basement membrane and collagen fibers. Interstitial matrix accumulation underwent partial recovery during follow-up periods in air; however, the thickening of the basement membrane did not resolve. Analysis of terminal bronchioles showed that short-term exposure to O3 caused a loss of ciliated cells and differentiation of preciliated and Clara cells. The bronchiolar cell population stabilized on continued exposure; however, chronic exposure resulted in structural changes, suggesting injury to both ciliated and Clara cells. We conclude that chronic exposure to low levels of O3 causes epithelial inflammation and interstitial fibrosis in the proximal alveolar region and bronchiolar epithelial cell injury.Item Embargo Examining the roles of resident non-myogenic mesenchymal cell populations in skeletal muscle development and injury(2022) Leinroth , AbigailThe success of muscle development and regeneration requires cooperation from both myogenic and their supportive niche cells. The muscular niche is complex. At the cellular level it is composed of a broad number of cell types including: endothelial vessels, nerve and nerve-supporting cells, resident immune populations, and a heterogenous group of non-myogenic mesenchymal cells. The non-myogenic mesenchymal cells include pericytes, vascular smooth muscle cells, interstitial tenocyte-like cells, and fibro-adipogenic progenitors (FAPs). Like all members of the muscular niche, this fraction is vital to muscle development and regeneration. Despite their importance to muscle development, regeneration, and homeostasis, detailed identities within non-myogenic mesenchymal cells remain elusive. By understanding the distinct makeup of this population, we can provide a foundation to examine their important regulatory roles in the processes of muscle development, homeostasis, injury and disease.
This thesis utilizes single cell RNA sequencing to establish the populations of non-myogenic mesenchymal cells in developing muscle. Our analysis identified pericytes, vascular smooth muscle cells, and tenocyte-like cell populations while uncovering a new level of heterogeneity in FAPs that not previously appreciated. Despite classical understanding of FAPs as one group, this work found that FAPs were sub-divided into five distinct populations, which compose two trajectories spawning from a common progenitor. This thesis defines the functional differences of each FAP population through a series of experiments including: fluorescence activated cell sorting of various FAP groups, studying their spatial localization on immunofluorescence, and testing the response of different FAPs to multiple injury and disease models.
Separate preliminary work examines the impact of NOTCH signaling in FAPs and the broader non-myogenic mesenchymal cell groups. These studies discovered that NOTCH signaling in the non-myogenic mesenchymal group, but not FAPs specifically, regulates muscular growth and intramuscular adipogenesis. Altogether this thesis advances our understanding of the identity, and role of, non-myogenic mesenchymal cells, in muscle development and regeneration.
Item Open Access Exogenous leptin enhances markers of airway fibrosis in a mouse model of chronic allergic airways disease.(Respiratory research, 2022-05-24) Ihrie, Mark D; McQuade, Victoria L; Womble, Jack T; Hegde, Akhil; McCravy, Matthew S; Lacuesta, Cyrus Victor G; Tighe, Robert M; Que, Loretta G; Walker, Julia KL; Ingram, Jennifer LBackground
Asthma patients with comorbid obesity exhibit increased disease severity, in part, due to airway remodeling, which is also observed in mouse models of asthma and obesity. A mediator of remodeling that is increased in obesity is leptin. We hypothesized that in a mouse model of allergic airways disease, mice receiving exogenous leptin would display increased airway inflammation and fibrosis.Methods
Five-week-old male and female C57BL/6J mice were challenged with intranasal house dust mite (HDM) allergen or saline 5 days per week for 6 weeks (n = 6-9 per sex, per group). Following each HDM exposure, mice received subcutaneous recombinant human leptin or saline. At 48 h after the final HDM challenge, lung mechanics were evaluated and the mice were sacrificed. Bronchoalveolar lavage was performed and differential cell counts were determined. Lung tissue was stained with Masson's trichrome, periodic acid-Schiff, and hematoxylin and eosin stains. Mouse lung fibroblasts were cultured, and whole lung mRNA was isolated.Results
Leptin did not affect mouse body weight, but HDM+leptin increased baseline blood glucose. In mixed-sex groups, leptin increased mouse lung fibroblast invasiveness and increased lung Col1a1 mRNA expression. Total lung resistance and tissue damping were increased with HDM+leptin treatment, but not leptin or HDM alone. Female mice exhibited enhanced airway responsiveness to methacholine with HDM+leptin treatment, while leptin alone decreased total respiratory system resistance in male mice.Conclusions
In HDM-induced allergic airways disease, administration of exogenous leptin to mice enhanced lung resistance and increased markers of fibrosis, with differing effects between males and females.Item Open Access Experimental inhibition of porcupine-mediated Wnt O-acylation attenuates kidney fibrosis.(Kidney Int, 2016-05) Madan, Babita; Patel, Mehul B; Zhang, Jiandong; Bunte, Ralph M; Rudemiller, Nathan P; Griffiths, Robert; Virshup, David M; Crowley, Steven DActivated Wnt signaling is critical in the pathogenesis of renal fibrosis, a final common pathway for most forms of chronic kidney disease. Therapeutic intervention by inhibition of individual Wnts or downstream Wnt/β-catenin signaling has been proposed, but these approaches do not interrupt the functions of all Wnts nor block non-canonical Wnt signaling pathways. Alternatively, an orally bioavailable small molecule, Wnt-C59, blocks the catalytic activity of the Wnt-acyl transferase porcupine, and thereby prevents secretion of all Wnt isoforms. We found that inhibiting porcupine dramatically attenuates kidney fibrosis in the murine unilateral ureteral obstruction model. Wnt-C59 treatment similarly blunts collagen mRNA expression in the obstructed kidney. Consistent with its actions to broadly arrest Wnt signaling, porcupine inhibition reduces expression of Wnt target genes and bolsters nuclear exclusion of β-catenin in the kidney following ureteral obstruction. Importantly, prevention of Wnt secretion by Wnt-C59 blunts expression of inflammatory cytokines in the obstructed kidney that otherwise provoke a positive feedback loop of Wnt expression in collagen-producing fibroblasts and epithelial cells. Thus, therapeutic targeting of porcupine abrogates kidney fibrosis not only by overcoming the redundancy of individual Wnt isoforms but also by preventing upstream cytokine-induced Wnt generation. These findings reveal a novel therapeutic maneuver to protect the kidney from fibrosis by interrupting a pathogenic crosstalk loop between locally generated inflammatory cytokines and the Wnt/β-catenin signaling pathway.Item Open Access Ferroptotic stress promotes the accumulation of pro-inflammatory proximal tubular cells in maladaptive renal repair.(eLife, 2021-07-19) Ide, Shintaro; Kobayashi, Yoshihiko; Ide, Kana; Strausser, Sarah A; Abe, Koki; Herbek, Savannah; O'Brien, Lori L; Crowley, Steven D; Barisoni, Laura; Tata, Aleksandra; Tata, Purushothama Rao; Souma, TomokazuOverwhelming lipid peroxidation induces ferroptotic stress and ferroptosis, a non-apoptotic form of regulated cell death that has been implicated in maladaptive renal repair in mice and humans. Using single-cell transcriptomic and mouse genetic approaches, we show that proximal tubular (PT) cells develop a molecularly distinct, pro-inflammatory state following injury. While these inflammatory PT cells transiently appear after mild injury and return to their original state without inducing fibrosis, after severe injury they accumulate and contribute to persistent inflammation. This transient inflammatory PT state significantly downregulates glutathione metabolism genes, making the cells vulnerable to ferroptotic stress. Genetic induction of high ferroptotic stress in these cells after mild injury leads to the accumulation of the inflammatory PT cells, enhancing inflammation and fibrosis. Our study broadens the roles of ferroptotic stress from being a trigger of regulated cell death to include the promotion and accumulation of proinflammatory cells that underlie maladaptive repair.Item Open Access Immunofibrotic drivers of impaired lung function in postacute sequelae of SARS-CoV-2 infection.(JCI insight, 2021-07-22) Chun, Hyung J; Coutavas, Elias; Pine, Alexander B; Lee, Alfred I; Yu, Vanessa L; Shallow, Marcus K; Giovacchini, Coral X; Mathews, Anne M; Stephenson, Brian; Que, Loretta G; Lee, Patty J; Kraft, Bryan DBACKGROUNDIndividuals recovering from COVID-19 frequently experience persistent respiratory ailments, which are key elements of postacute sequelae of SARS-CoV-2 infection (PASC); however, little is known about the underlying biological factors that may direct lung recovery and the extent to which these are affected by COVID-19 severity.METHODSWe performed a prospective cohort study of individuals with persistent symptoms after acute COVID-19, collecting clinical data, pulmonary function tests, and plasma samples used for multiplex profiling of inflammatory, metabolic, angiogenic, and fibrotic factors.RESULTSSixty-one participants were enrolled across 2 academic medical centers at a median of 9 weeks (interquartile range, 6-10 weeks) after COVID-19 illness: n = 13 participants (21%) had mild COVID-19 and were not hospitalized, n = 30 participants (49%) were hospitalized but were considered noncritical, and n = 18 participants (30%) were hospitalized and in the intensive care unit (ICU). Fifty-three participants (85%) had lingering symptoms, most commonly dyspnea (69%) and cough (58%). Forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), and diffusing capacity for carbon monoxide (DLCO) declined as COVID-19 severity increased (P < 0.05) but these values did not correlate with respiratory symptoms. Partial least-squares discriminant analysis of plasma biomarker profiles clustered participants by past COVID-19 severity. Lipocalin-2 (LCN2), MMP-7, and HGF identified by our analysis were significantly higher in the ICU group (P < 0.05), inversely correlated with FVC and DLCO (P < 0.05), and were confirmed in a separate validation cohort (n = 53).CONCLUSIONSubjective respiratory symptoms are common after acute COVID-19 illness but do not correlate with COVID-19 severity or pulmonary function. Host response profiles reflecting neutrophil activation (LCN2), fibrosis signaling (MMP-7), and alveolar repair (HGF) track with lung impairment and may be novel therapeutic or prognostic targets.FundingNational Heart, Lung, and Blood Institute (K08HL130557 and R01HL142818), American Heart Association (Transformational Project Award), the DeLuca Foundation Award, a donation from Jack Levin to the Benign Hematology Program at Yale University, and Duke University.Item Open Access Implant healing in experimental animal models of diabetes.(J Diabetes Sci Technol, 2011-05-01) Le, NN; Rose, MB; Levinson, H; Klitzman, BDiabetes mellitus is becoming increasingly prevalent worldwide. Additionally, there is an increasing number of patients receiving implantable devices such as glucose sensors and orthopedic implants. Thus, it is likely that the number of diabetic patients receiving these devices will also increase. Even though implantable medical devices are considered biocompatible by the Food and Drug Administration, the adverse tissue healing that occurs adjacent to these foreign objects is a leading cause of their failure. This foreign body response leads to fibrosis, encapsulation of the device, and a reduction or cessation of device performance. A second adverse event is microbial infection of implanted devices, which can lead to persistent local and systemic infections and also exacerbates the fibrotic response. Nearly half of all nosocomial infections are associated with the presence of an indwelling medical device. Events associated with both the foreign body response and implant infection can necessitate device removal and may lead to amputation, which is associated with significant morbidity and cost. Diabetes mellitus is generally indicated as a risk factor for the infection of a variety of implants such as prosthetic joints, pacemakers, implantable cardioverter defibrillators, penile implants, and urinary catheters. Implant infection rates in diabetic patients vary depending upon the implant and the microorganism, however, for example, diabetes was found to be a significant variable associated with a nearly 7.2% infection rate for implantable cardioverter defibrillators by the microorganism Candida albicans. While research has elucidated many of the altered mechanisms of diabetic cutaneous wound healing, the internal healing adjacent to indwelling medical devices in a diabetic model has rarely been studied. Understanding this healing process is crucial to facilitating improved device design. The purpose of this article is to summarize the physiologic factors that influence wound healing and infection in diabetic patients, to review research concerning diabetes and biomedical implants and device infection, and to critically analyze which diabetic animal model might be advantageous for assessing internal healing adjacent to implanted devices.Item Open Access Inflammation-Dependent Regulation of Hepatocellular Carcinoma Tumor Progression(2015) Markowitz, Geoffrey JosephLiver cancer is a devastating disease that is the 5th most common cancer in men, 7th most common cancer in women, and the 3rd leading cause of cancer-related mortality. This disease arises from multiple etiological factors, including hepatitis viruses, environmental toxins, alcohol abuse, and metabolic syndrome, which induce a state of chronic inflammation. This diseased liver tissue background is a drastically different microenvironment from the healthy liver, especially with regards to immune cell prevalence and presence of mediators of immune function. It has been well-established that this altered tissue background contributes significantly to the tumorigenic process, yet its effects on the progression of the disease are more poorly understood.
To better understand the consequences of liver disease on tumor growth and the interplay with its microenvironment, we first utilized two standard methods of fibrosis induction and orthotopic implantation of tumors into the inflamed and fibrotic liver to mimic the liver condition in human HCC patients, and examined the immune infiltrate. Compared to non-diseased controls, tumor growth is significantly enhanced under fibrotic conditions. The immune cells that infiltrated the tumors are also drastically different, with decreased proportions of natural killer cells but greatly increased numbers of immune-suppressive CD11b+ Gr1hi myeloid cells in both models of fibrosis. In addition, there are model-specific differences: increased proportions of CD11b+ myeloid cells and CD4+ CD25+ T-cells are found in tumors in the bile duct ligation model but not in the carbon tetrachloride model. Importantly, the skewed immune infiltration into the tumor, while having some commonalities with the non-tumor tissue, had several distinct, tumor-specific populations. Induction of fibrosis also alters the cytokine production of implanted tumor cells, which could have far-reaching consequences on the immune infiltrate and its functionality. Taken together, this work demonstrates that the combination of fibrosis induction with orthotopic tumor implantation results in a markedly different tumor microenvironment and tumor growth kinetics.
Appreciating that the altered immune microenvironment dramatically shifts tumor progression, we sought to further explore the effects of individual inflammatory mediators on the development of the disease. Interleukin 18 (IL-18) is an inflammatory cytokine that is markedly increased in the circulation of patients with HCC correlated with poor prognosis. However, the precise role for IL-18 in HCC remains unclear, with reports presenting both pro- and anti-tumorigenic activities. To answer this question definitively, we interrogated in more detail the expression profiles of IL-18 in tissue specimens from HCC patients and conducted experimentation using multiple clinically relevant mouse models to explore the functional role of this cytokine in the context of HCC. Our results indicate that IL-18 exerts a tumor-suppressive effect mediated in large part by alterations in survival and functionality of T-lymphocytes which infiltrated the tumor microenvironment. This tumor-suppressive effect is however dependent upon the inflammatory milieu: In the absence of an inflammatory environment, whether from a chemical carcinogenesis model or a fibrosis induction model, loss of IL-18 signaling does not affect tumor growth. This effect is also stage-dependent. Taken together, our findings establish a tumor-suppressive role for IL-18 in established HCC and provide a mechanistic explanation for the complex relationship between its expression pattern and HCC prognosis.
In summary, this work demonstrates a dramatic shift in the microenvironment of developing HCC tumors in the presence of chronic inflammatory stimuli. This microenvironment, which more accurately models the situation in which tumors develop and progress in patients, alters the presence and functionality of many immune mediators. In particular, IL-18 signaling is a powerful mediator of tumor progression, however observation of its functionality is dependent on an inflammatory context. This work provides new insight into the complex processes underlying HCC tumor progression, and emphasizes the necessity for more accurate modeling of HCC progression in mice which takes into account the drastic changes in the tissue caused by chronic liver disease.
Item Open Access Inhibition of pulmonary fibrosis in mice by CXCL10 requires glycosaminoglycan binding and syndecan-4.(J Clin Invest, 2010-06) Jiang, D; Liang, J; Campanella, GS; Guo, R; Yu, S; Xie, T; Liu, N; Jung, Y; Homer, R; Meltzer, EB; Li, Y; Tager, AM; Goetinck, PF; Luster, AD; Noble, PWPulmonary fibrosis is a progressive, dysregulated response to injury culminating in compromised lung function due to excess extracellular matrix production. The heparan sulfate proteoglycan syndecan-4 is important in mediating fibroblast-matrix interactions, but its role in pulmonary fibrosis has not been explored. To investigate this issue, we used intratracheal instillation of bleomycin as a model of acute lung injury and fibrosis. We found that bleomycin treatment increased syndecan-4 expression. Moreover, we observed a marked decrease in neutrophil recruitment and an increase in both myofibroblast recruitment and interstitial fibrosis in bleomycin-treated syndecan-4-null (Sdc4-/-) mice. Subsequently, we identified a direct interaction between CXCL10, an antifibrotic chemokine, and syndecan-4 that inhibited primary lung fibroblast migration during fibrosis; mutation of the heparin-binding domain, but not the CXCR3 domain, of CXCL10 diminished this effect. Similarly, migration of fibroblasts from patients with pulmonary fibrosis was inhibited in the presence of CXCL10 protein defective in CXCR3 binding. Furthermore, administration of recombinant CXCL10 protein inhibited fibrosis in WT mice, but not in Sdc4-/- mice. Collectively, these data suggest that the direct interaction of syndecan-4 and CXCL10 in the lung interstitial compartment serves to inhibit fibroblast recruitment and subsequent fibrosis. Thus, administration of CXCL10 protein defective in CXCR3 binding may represent a novel therapy for pulmonary fibrosis.Item Open Access Molecular alterations in skeletal muscle in rheumatoid arthritis are related to disease activity, physical inactivity, and disability.(Arthritis Res Ther, 2017-01-23) Huffman, Kim M; Jessee, Ryan; Andonian, Brian; Davis, Brittany N; Narowski, Rachel; Huebner, Janet L; Kraus, Virginia B; McCracken, Julie; Gilmore, Brian F; Tune, K Noelle; Campbell, Milton; Koves, Timothy R; Muoio, Deborah M; Hubal, Monica J; Kraus, William EBACKGROUND: To identify molecular alterations in skeletal muscle in rheumatoid arthritis (RA) that may contribute to ongoing disability in RA. METHODS: Persons with seropositive or erosive RA (n = 51) and control subjects matched for age, gender, race, body mass index (BMI), and physical activity (n = 51) underwent assessment of disease activity, disability, pain, physical activity and thigh muscle biopsies. Muscle tissue was used for measurement of pro-inflammatory markers, transcriptomics, and comprehensive profiling of metabolic intermediates. Groups were compared using mixed models. Bivariate associations were assessed with Spearman correlation. RESULTS: Compared to controls, patients with RA had 75% greater muscle concentrations of IL-6 protein (p = 0.006). In patients with RA, muscle concentrations of inflammatory markers were positively associated (p < 0.05 for all) with disease activity (IL-1β, IL-8), disability (IL-1β, IL-6), pain (IL-1β, TNF-α, toll-like receptor (TLR)-4), and physical inactivity (IL-1β, IL-6). Muscle cytokines were not related to corresponding systemic cytokines. Prominent among the gene sets differentially expressed in muscles in RA versus controls were those involved in skeletal muscle repair processes and glycolytic metabolism. Metabolic profiling revealed 46% higher concentrations of pyruvate in muscle in RA (p < 0.05), and strong positive correlation between levels of amino acids involved in fibrosis (arginine, ornithine, proline, and glycine) and disability (p < 0.05). CONCLUSION: RA is accompanied by broad-ranging molecular alterations in skeletal muscle. Analysis of inflammatory markers, gene expression, and metabolic intermediates linked disease-related disruptions in muscle inflammatory signaling, remodeling, and metabolic programming to physical inactivity and disability. Thus, skeletal muscle dysfunction might contribute to a viscous cycle of RA disease activity, physical inactivity, and disability.Item Open Access Novel Manganese-Porphyrin Superoxide Dismutase-Mimetic Widens the Therapeutic Margin in a Preclinical Head and Neck Cancer Model.(International journal of radiation oncology, biology, physics, 2015-11) Ashcraft, Kathleen A; Boss, Mary-Keara; Tovmasyan, Artak; Roy Choudhury, Kingshuk; Fontanella, Andrew N; Young, Kenneth H; Palmer, Gregory M; Birer, Samuel R; Landon, Chelsea D; Park, Won; Das, Shiva K; Weitner, Tin; Sheng, Huaxin; Warner, David S; Brizel, David M; Spasojevic, Ivan; Batinic-Haberle, Ines; Dewhirst, Mark WPurpose
To test the effects of a novel Mn porphyrin oxidative stress modifier, Mn(III) meso-tetrakis(N-n-butoxyethylpyridinium-2-yl)porphyrin (MnBuOE), for its radioprotective and radiosensitizing properties in normal tissue versus tumor, respectively.Methods and materials
Murine oral mucosa and salivary glands were treated with a range of radiation doses with or without MnBuOE to establish the dose-effect curves for mucositis and xerostomia. Radiation injury was quantified by intravital near-infrared imaging of cathepsin activity, assessment of salivation, and histologic analysis. To evaluate effects of MnBuOE on the tumor radiation response, we administered the drug as an adjuvant to fractionated radiation of FaDu xenografts. Again, a range of radiation therapy (RT) doses was administered to establish the radiation dose-effect curve. The 50% tumor control dose values with or without MnBuOE and dose-modifying factor were determined.Results
MnBuOE protected normal tissue by reducing RT-mediated mucositis, xerostomia, and fibrosis. The dose-modifying factor for protection against xerostomia was 0.77. In contrast, MnBuOE increased tumor local control rates compared with controls. The dose-modifying factor, based on the ratio of 50% tumor control dose values, was 1.3. Immunohistochemistry showed that MnBuOE-treated tumors exhibited a significant influx of M1 tumor-associated macrophages, which provides mechanistic insight into its radiosensitizing effects in tumors.Conclusions
MnBuOE widens the therapeutic margin by decreasing the dose of radiation required to control tumor, while increasing normal tissue resistance to RT-mediated injury. This is the first study to quantitatively demonstrate the magnitude of a single drug's ability to radioprotect normal tissue while radiosensitizing tumor.Item Open Access Podoplanin neutralization improves cardiac remodeling and function after acute myocardial infarction.(JCI insight, 2019-07) Cimini, Maria; Garikipati, Venkata Naga Srikanth; de Lucia, Claudio; Cheng, Zhongjian; Wang, Chunlin; Truongcao, May M; Lucchese, Anna Maria; Roy, Rajika; Benedict, Cindy; Goukassian, David A; Koch, Walter J; Kishore, RajPodoplanin, a small mucine-type transmembrane glycoprotein, has been recently shown to be expressed by lymphangiogenic, fibrogenic and mesenchymal progenitor cells in the acutely and chronically infarcted myocardium. Podoplanin binds to CLEC-2, a C-type lectin-like receptor 2 highly expressed by CD11bhigh cells following inflammatory stimuli. Why podoplanin expression appears only after organ injury is currently unknown. Here, we characterize the role of podoplanin in different stages of myocardial repair after infarction and propose a podoplanin-mediated mechanism in the resolution of post-MI inflammatory response and cardiac repair. Neutralization of podoplanin led to significant improvements in the left ventricular functions and scar composition in animals treated with podoplanin neutralizing antibody. The inhibition of the interaction between podoplanin and CLEC-2 expressing immune cells in the heart enhances the cardiac performance, regeneration and angiogenesis post MI. Our data indicates that modulating the interaction between podoplanin positive cells with the immune cells after myocardial infarction positively affects immune cell recruitment and may represent a novel therapeutic target to augment post-MI cardiac repair, regeneration and function.Item Open Access The CO/HO system reverses inhibition of mitochondrial biogenesis and prevents murine doxorubicin cardiomyopathy.(J Clin Invest, 2007-12) Suliman, Hagir B; Carraway, Martha Sue; Ali, Abdelwahid S; Reynolds, Chrystal M; Welty-Wolf, Karen E; Piantadosi, Claude AThe clinical utility of anthracycline anticancer agents, especially doxorubicin, is limited by a progressive toxic cardiomyopathy linked to mitochondrial damage and cardiomyocyte apoptosis. Here we demonstrate that the post-doxorubicin mouse heart fails to upregulate the nuclear program for mitochondrial biogenesis and its associated intrinsic antiapoptosis proteins, leading to severe mitochondrial DNA (mtDNA) depletion, sarcomere destruction, apoptosis, necrosis, and excessive wall stress and fibrosis. Furthermore, we exploited recent evidence that mitochondrial biogenesis is regulated by the CO/heme oxygenase (CO/HO) system to ameliorate doxorubicin cardiomyopathy in mice. We found that the myocardial pathology was averted by periodic CO inhalation, which restored mitochondrial biogenesis and circumvented intrinsic apoptosis through caspase-3 and apoptosis-inducing factor. Moreover, CO simultaneously reversed doxorubicin-induced loss of DNA binding by GATA-4 and restored critical sarcomeric proteins. In isolated rat cardiac cells, HO-1 enzyme overexpression prevented doxorubicin-induced mtDNA depletion and apoptosis via activation of Akt1/PKB and guanylate cyclase, while HO-1 gene silencing exacerbated doxorubicin-induced mtDNA depletion and apoptosis. Thus doxorubicin disrupts cardiac mitochondrial biogenesis, which promotes intrinsic apoptosis, while CO/HO promotes mitochondrial biogenesis and opposes apoptosis, forestalling fibrosis and cardiomyopathy. These findings imply that the therapeutic index of anthracycline cancer chemotherapeutics can be improved by the protection of cardiac mitochondrial biogenesis.