Browsing by Subject "Fourier Analysis"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Automated quality control in nuclear medicine using the structured noise index.(Journal of applied clinical medical physics, 2020-04) Nelson, Jeffrey S; Samei, EhsanPurpose
Daily flood-field uniformity evaluation serves as the central element of nuclear medicine (NM) quality control (QC) programs. Uniformity images are traditionally analyzed using pixel value-based metrics, that is, integral uniformity (IU), which often fail to capture subtle structure and patterns caused by changes in gamma camera performance, requiring visual inspections which are subjective and time demanding. The goal of this project was to implement an advanced QC metrology for NM to effectively identify nonuniformity issues, and report issues in a timely manner for efficient correction prior to clinical use. The project involved the implementation of the program over a 2-year period at a multisite major medical institution.Methods
Using a previously developed quantitative uniformity analysis metric, the structured noise index (SNI) [Nelson et al. (2014), \textit{J Nucl Med.}, \textbf{55}:169-174], an automated QC process was developed to analyze, archive, and report on daily NM QC uniformity images. Clinical implementation of the newly developed program ran in parallel with the manufacturer's reported IU-based QC program. The effectiveness of the SNI program was evaluated over a 21-month period using sensitivity and coefficient of variation statistics.Results
A total of 7365 uniformity QC images were analyzed. Lower level SNI alerts were generated in 12.5% of images and upper level alerts in 1.7%. Intervention due to image quality issues occurred on 26 instances; the SNI metric identified 24, while the IU metric identified eight. The SNI metric reported five upper level alerts where no clinical engineering intervention was deemed necessary.Conclusion
An SNI-based QC program provides a robust quantification of the performance of gamma camera uniformity. It operates seamlessly across a fleet of multiple camera models and, additionally, provides effective workflow among the clinical staff. The reliability of this process could eliminate the need for visual inspection of each image, saving valuable time, while enabling quantitative analysis of inter- and intrasystem performance.Item Open Access Compressive holography.(2012) Lim, Se HoonCompressive holography estimates images from incomplete data by using sparsity priors. Compressive holography combines digital holography and compressive sensing. Digital holography consists of computational image estimation from data captured by an electronic focal plane array. Compressive sensing enables accurate data reconstruction by prior knowledge on desired signal. Computational and optical co-design optimally supports compressive holography in the joint computational and optical domain. This dissertation explores two examples of compressive holography : estimation of 3D tomographic images from 2D data and estimation of images from under sampled apertures. Compressive holography achieves single shot holographic tomography using decompressive inference. In general, 3D image reconstruction suffers from underdetermined measurements with a 2D detector. Specifically, single shot holographic tomography shows the uniqueness problem in the axial direction because the inversion is ill-posed. Compressive sensing alleviates the ill-posed problem by enforcing some sparsity constraints. Holographic tomography is applied for video-rate microscopic imaging and diffuse object imaging. In diffuse object imaging, sparsity priors are not valid in coherent image basis due to speckle. So incoherent image estimation is designed to hold the sparsity in incoherent image basis by support of multiple speckle realizations. High pixel count holography achieves high resolution and wide field-of-view imaging. Coherent aperture synthesis can be one method to increase the aperture size of a detector. Scanning-based synthetic aperture confronts a multivariable global optimization problem due to time-space measurement errors. A hierarchical estimation strategy divides the global problem into multiple local problems with support of computational and optical co-design. Compressive sparse aperture holography can be another method. Compressive sparse sampling collects most of significant field information with a small fill factor because object scattered fields are locally redundant. Incoherent image estimation is adopted for the expanded modulation transfer function and compressive reconstruction.Item Open Access Correction for Eddy Current-Induced Echo-Shifting Effect in Partial-Fourier Diffusion Tensor Imaging.(Biomed Res Int, 2015) Truong, Trong-Kha; Song, Allen W; Chen, Nan-KueiIn most diffusion tensor imaging (DTI) studies, images are acquired with either a partial-Fourier or a parallel partial-Fourier echo-planar imaging (EPI) sequence, in order to shorten the echo time and increase the signal-to-noise ratio (SNR). However, eddy currents induced by the diffusion-sensitizing gradients can often lead to a shift of the echo in k-space, resulting in three distinct types of artifacts in partial-Fourier DTI. Here, we present an improved DTI acquisition and reconstruction scheme, capable of generating high-quality and high-SNR DTI data without eddy current-induced artifacts. This new scheme consists of three components, respectively, addressing the three distinct types of artifacts. First, a k-space energy-anchored DTI sequence is designed to recover eddy current-induced signal loss (i.e., Type 1 artifact). Second, a multischeme partial-Fourier reconstruction is used to eliminate artificial signal elevation (i.e., Type 2 artifact) associated with the conventional partial-Fourier reconstruction. Third, a signal intensity correction is applied to remove artificial signal modulations due to eddy current-induced erroneous T2(∗) -weighting (i.e., Type 3 artifact). These systematic improvements will greatly increase the consistency and accuracy of DTI measurements, expanding the utility of DTI in translational applications where quantitative robustness is much needed.Item Open Access Measuring morphological features using light-scattering spectroscopy and Fourier-domain low-coherence interferometry.(Opt Lett, 2010-02-01) Robles, Francisco E; Wax, AdamWe present measurements of morphological features in a thick turbid sample using light-scattering spectroscopy (LSS) and Fourier-domain low-coherence interferometry (fLCI) by processing with the dual-window (DW) method. A parallel frequency domain optical coherence tomography (OCT) system with a white-light source is used to image a two-layer phantom containing polystyrene beads of diameters 4.00 and 6.98 mum on the top and bottom layers, respectively. The DW method decomposes each OCT A-scan into a time-frequency distribution with simultaneously high spectral and spatial resolution. The spectral information from localized regions in the sample is used to determine scatterer structure. The results show that the two scatterer populations can be differentiated using LSS and fLCI.