Browsing by Subject "Frontal Lobe"
Now showing 1 - 20 of 24
- Results Per Page
- Sort Options
Item Open Access A case of frontal neuropsychological and neuroimaging signs following multiple primary-blast exposure.(Neurocase, 2012-06) Hayes, Jasmeet Pannu; Morey, Rajendra A; Tupler, Larry ABlast-related traumatic brain injury (TBI) from the Afghanistan and Iraq wars represents a significant medical concern for troops and veterans. To better understand the consequences of primary-blast injury in humans, we present a case of a Marine exposed to multiple primary blasts during his 14-year military career. The neuropsychological profile of this formerly high-functioning veteran suggested primarily executive dysfunction. Diffusion-tensor imaging revealed white-matter pathology in long fiber tracks compared with a composite fractional-anisotropy template derived from a veteran reference control group without TBI. This study supports the existence of primary blast-induced neurotrauma in humans and introduces a neuroimaging technique with potential to discriminate multiple-blast TBI.Item Open Access A pathway in primate brain for internal monitoring of movements.(Science, 2002-05-24) Sommer, Marc A; Wurtz, Robert HIt is essential to keep track of the movements we make, and one way to do that is to monitor correlates, or corollary discharges, of neuronal movement commands. We hypothesized that a previously identified pathway from brainstem to frontal cortex might carry corollary discharge signals. We found that neuronal activity in this pathway encodes upcoming eye movements and that inactivating the pathway impairs sequential eye movements consistent with loss of corollary discharge without affecting single eye movements. These results identify a pathway in the brain of the primate Macaca mulatta that conveys corollary discharge signals.Item Open Access Adult age differences in frontostriatal representation of prediction error but not reward outcome.(Cogn Affect Behav Neurosci, 2014-06) Samanez-Larkin, Gregory R; Worthy, Darrell A; Mata, Rui; McClure, Samuel M; Knutson, BrianEmerging evidence from decision neuroscience suggests that although younger and older adults show similar frontostriatal representations of reward magnitude, older adults often show deficits in feedback-driven reinforcement learning. In the present study, healthy adults completed reward-based tasks that did or did not depend on probabilistic learning, while undergoing functional neuroimaging. We observed reductions in the frontostriatal representation of prediction errors during probabilistic learning in older adults. In contrast, we found evidence for stability across adulthood in the representation of reward outcome in a task that did not require learning. Together, the results identify changes across adulthood in the dynamic coding of relational representations of feedback, in spite of preserved reward sensitivity in old age. Overall, the results suggest that the neural representation of prediction error, but not reward outcome, is reduced in old age. These findings reveal a potential dissociation between cognition and motivation with age and identify a potential mechanism for explaining changes in learning-dependent decision making in old adulthood.Item Open Access Age mediation of frontoparietal activation during visual feature search.(Neuroimage, 2014-11-15) Madden, David J; Parks, Emily L; Davis, Simon W; Diaz, Michele T; Potter, Guy G; Chou, Ying-hui; Chen, Nan-kuei; Cabeza, RobertoActivation of frontal and parietal brain regions is associated with attentional control during visual search. We used fMRI to characterize age-related differences in frontoparietal activation in a highly efficient feature search task, detection of a shape singleton. On half of the trials, a salient distractor (a color singleton) was present in the display. The hypothesis was that frontoparietal activation mediated the relation between age and attentional capture by the salient distractor. Participants were healthy, community-dwelling individuals, 21 younger adults (19-29 years of age) and 21 older adults (60-87 years of age). Top-down attention, in the form of target predictability, was associated with an improvement in search performance that was comparable for younger and older adults. The increase in search reaction time (RT) associated with the salient distractor (attentional capture), standardized to correct for generalized age-related slowing, was greater for older adults than for younger adults. On trials with a color singleton distractor, search RT increased as a function of increasing activation in frontal regions, for both age groups combined, suggesting increased task difficulty. Mediational analyses disconfirmed the hypothesized model, in which frontal activation mediated the age-related increase in attentional capture, but supported an alternative model in which age was a mediator of the relation between frontal activation and capture.Item Open Access An epigenome-wide association study of posttraumatic stress disorder in US veterans implicates several new DNA methylation loci.(Clinical epigenetics, 2020-03) Logue, Mark W; Miller, Mark W; Wolf, Erika J; Huber, Bertrand Russ; Morrison, Filomene G; Zhou, Zhenwei; Zheng, Yuanchao; Smith, Alicia K; Daskalakis, Nikolaos P; Ratanatharathorn, Andrew; Uddin, Monica; Nievergelt, Caroline M; Ashley-Koch, Allison E; Baker, Dewleen G; Beckham, Jean C; Garrett, Melanie E; Boks, Marco P; Geuze, Elbert; Grant, Gerald A; Hauser, Michael A; Kessler, Ronald C; Kimbrel, Nathan A; Maihofer, Adam X; Marx, Christine E; Qin, Xue-Jun; Risbrough, Victoria B; Rutten, Bart PF; Stein, Murray B; Ursano, Robert J; Vermetten, Eric; Vinkers, Christiaan H; Ware, Erin B; Stone, Annjanette; Schichman, Steven A; McGlinchey, Regina E; Milberg, William P; Hayes, Jasmeet P; Verfaellie, Mieke; Traumatic Stress Brain Study GroupBackground
Previous studies using candidate gene and genome-wide approaches have identified epigenetic changes in DNA methylation (DNAm) associated with posttraumatic stress disorder (PTSD).Methods
In this study, we performed an EWAS of PTSD in a cohort of Veterans (n = 378 lifetime PTSD cases and 135 controls) from the Translational Research Center for TBI and Stress Disorders (TRACTS) cohort assessed using the Illumina EPIC Methylation BeadChip which assesses DNAm at more than 850,000 sites throughout the genome. Our model included covariates for ancestry, cell heterogeneity, sex, age, and a smoking score based on DNAm at 39 smoking-associated CpGs. We also examined in EPIC-based DNAm data generated from pre-frontal cortex (PFC) tissue from the National PTSD Brain Bank (n = 72).Results
The analysis of blood samples yielded one genome-wide significant association with PTSD at cg19534438 in the gene G0S2 (p = 1.19 × 10-7, padj = 0.048). This association was replicated in an independent PGC-PTSD-EWAS consortium meta-analysis of military cohorts (p = 0.0024). We also observed association with the smoking-related locus cg05575921 in AHRR despite inclusion of a methylation-based smoking score covariate (p = 9.16 × 10-6), which replicates a previously observed PGC-PTSD-EWAS association (Smith et al. 2019), and yields evidence consistent with a smoking-independent effect. The top 100 EWAS loci were then examined in the PFC data. One of the blood-based PTSD loci, cg04130728 in CHST11, which was in the top 10 loci in blood, but which was not genome-wide significant, was significantly associated with PTSD in brain tissue (in blood p = 1.19 × 10-5, padj = 0.60, in brain, p = 0.00032 with the same direction of effect). Gene set enrichment analysis of the top 500 EWAS loci yielded several significant overlapping GO terms involved in pathogen response, including "Response to lipopolysaccharide" (p = 6.97 × 10-6, padj = 0.042).Conclusions
The cross replication observed in independent cohorts is evidence that DNA methylation in peripheral tissue can yield consistent and replicable PTSD associations, and our results also suggest that that some PTSD associations observed in peripheral tissue may mirror associations in the brain.Item Open Access Brain circuits for the internal monitoring of movements.(Annu Rev Neurosci, 2008) Sommer, Marc A; Wurtz, Robert HEach movement we make activates our own sensory receptors, thus causing a problem for the brain: the spurious, movement-related sensations must be discriminated from the sensory inputs that really matter, those representing our environment. Here we consider circuits for solving this problem in the primate brain. Such circuits convey a copy of each motor command, known as a corollary discharge (CD), to brain regions that use sensory input. In the visual system, CD signals may help to produce a stable visual percept from the jumpy images resulting from our rapid eye movements. A candidate pathway for providing CD for vision ascends from the superior colliculus to the frontal cortex in the primate brain. This circuit conveys warning signals about impending eye movements that are used for planning subsequent movements and analyzing the visual world. Identifying this circuit has provided a model for studying CD in other primate sensory systems and may lead to a better understanding of motor and mental disorders.Item Open Access Brain connectivity and visual attention.(Brain connectivity, 2013-01) Parks, Emily L; Madden, David JEmerging hypotheses suggest that efficient cognitive functioning requires the integration of separate, but interconnected cortical networks in the brain. Although task-related measures of brain activity suggest that a frontoparietal network is associated with the control of attention, little is known regarding how components within this distributed network act together or with other networks to achieve various attentional functions. This review considers both functional and structural studies of brain connectivity, as complemented by behavioral and task-related neuroimaging data. These studies show converging results: The frontal and parietal cortical regions are active together, over time, and identifiable frontoparietal networks are active in relation to specific task demands. However, the spontaneous, low-frequency fluctuations of brain activity that occur in the resting state, without specific task demands, also exhibit patterns of connectivity that closely resemble the task-related, frontoparietal attention networks. Both task-related and resting-state networks exhibit consistent relations to behavioral measures of attention. Further, anatomical structure, particularly white matter pathways as defined by diffusion tensor imaging, places constraints on intrinsic functional connectivity. Lastly, connectivity analyses applied to investigate cognitive differences across individuals in both healthy and diseased states suggest that disconnection of attentional networks is linked to deficits in cognitive functioning, and in extreme cases, to disorders of attention. Thus, comprehensive theories of visual attention and their clinical translation depend on the continued integration of behavioral, task-related neuroimaging, and brain connectivity measures.Item Open Access Compensatory saccades made to remembered targets following orbital displacement by electrically stimulating the dorsomedial frontal cortex or frontal eye fields of primates.(Brain Res, 1996-07-15) Tehovnik, EJ; Sommer, MAIf the eye-position signal during visually-evoked saccades is dependent on the dorsomedial frontal cortex (DMFC), one would expect that saccades generated to briefly presented visual targets would be disrupted after displacement of the eyes via electrical stimulation of this cortical area. Compared are compensatory saccades evoked to brief targets following stimulation of the DMFC and frontal eye fields (FEF). Compensatory saccades produced to brief targets following perturbation via the DMFC were not affected. Accordingly, electrical stimulation of the DMFC does not disrupt the eye-position signal during the execution of visually-evoked saccades.Item Open Access Composition and topographic organization of signals sent from the frontal eye field to the superior colliculus.(J Neurophysiol, 2000-04) Sommer, MA; Wurtz, RHThe frontal eye field (FEF) and superior colliculus (SC) contribute to saccadic eye movement generation, and much of the FEF's oculomotor influence may be mediated through the SC. The present study examined the composition and topographic organization of signals flowing from FEF to SC by recording from FEF neurons that were antidromically activated from rostral or caudal SC. The first and most general result was that, in a sample of 88 corticotectal neurons, the types of signals relayed from FEF to SC were highly diverse, reflecting the general population of signals within FEF rather than any specific subset of signals. Second, many neurons projecting from FEF to SC carried signals thought to reflect cognitive operations, namely tonic discharges during the delay period of a delayed-saccade task (delay signals), elevated discharges during the gap period of a gap task (gap increase signals), or both. Third, FEF neurons discharging during fixation were found to project to the SC, although they did not project preferentially to rostral SC, where similar fixation neurons are found. Neurons that did project preferentially to the rostral SC were those with foveal visual responses and those pausing during the gap period of the gap task. Many of the latter neurons also had foveal visual responses, presaccadic pauses in activity, and postsaccadic increases in activity. These two types of rostral-projecting neurons therefore may contribute to the activity of rostral SC fixation neurons. Fourth, conduction velocity was used as an indicator of cell size to correct for sampling bias. The outcome of this correction procedure suggested that among the most prevalent neurons in the FEF corticotectal population are those carrying putative cognitive-related signals, i.e., delay and gap increase signals, and among the least prevalent are those carrying presaccadic burst discharges but lacking peripheral visual responses. Fifth, corticotectal neurons carrying various signals were biased topographically across the FEF. Neurons with peripheral visual responses but lacking presaccadic burst discharges were biased laterally, neurons with presaccadic burst discharges but lacking peripheral visual responses were biased medially, and neurons carrying delay or gap increase signals were biased dorsally. Finally, corticotectal neurons were distributed within the FEF as a function of their visual or movement field eccentricity and projected to the SC such that eccentricity maps in both structures were closely aligned. We conclude that the FEF most likely influences the activity of SC neurons continuously from the start of fixation, through visual analysis and cognitive manipulations, until a saccade is generated and fixation begins anew. Furthermore, the projection from FEF to SC is highly topographically organized in terms of function at both its source and its termination.Item Open Access Electrically evoked saccades from the dorsomedial frontal cortex and frontal eye fields: a parametric evaluation reveals differences between areas.(Exp Brain Res, 1997-12) Tehovnik, EJ; Sommer, MAUsing electrical stimulation to evoke saccades from the dorsomedial frontal cortex (DMFC) and frontal eye fields (FEF) of rhesus monkeys, parametric tests were conducted to compare the excitability properties of these regions. Pulse frequency and pulse current, pulse frequency and train duration, and pulse current and pulse duration were varied to determine threshold functions for a 50% probability of evoking a saccade. Also a wide range of frequencies were tested to evoke saccades, while holding all other parameters constant. For frequencies beyond 150 Hz, the probability of evoking saccades decreased for the DMFC, whereas for the FEF this probability remained at 100%. To evoke saccades readily from the DMFC, train durations of greater than 200 ms were needed; for the FEF, durations of less than 100 ms were sufficient. Even though the chronaxies of neurons residing in the DMFC and FEF were similar (ranging from 0.1 to 0.24 ms) significantly higher currents were required to evoke saccades from the DMFC than FEF. Thus the stimulation parameters that are optimal for evoking saccades from the DMFC differ from those that are optimal for evoking saccades from the FEF. Although the excitability of neurons in the DMFC and FEF are similar (due to similar chronaxies), we suggest that the density of saccade-relevant neurons is higher in the FEF than in the DMFC.Item Open Access Emotion-attention network interactions during a visual oddball task.(Brain Res Cogn Brain Res, 2004-06) Fichtenholtz, Harlan M; Dean, Heather L; Dillon, Daniel G; Yamasaki, Hiroshi; McCarthy, Gregory; LaBar, Kevin SEmotional and attentional functions are known to be distributed along ventral and dorsal networks in the brain, respectively. However, the interactions between these systems remain to be specified. The present study used event-related functional magnetic resonance imaging (fMRI) to investigate how attentional focus can modulate the neural activity elicited by scenes that vary in emotional content. In a visual oddball task, aversive and neutral scenes were presented intermittently among circles and squares. The squares were frequent standard events, whereas the other novel stimulus categories occurred rarely. One experimental group [N=10] was instructed to count the circles, whereas another group [N=12] counted the emotional scenes. A main effect of emotion was found in the amygdala (AMG) and ventral frontotemporal cortices. In these regions, activation was significantly greater for emotional than neutral stimuli but was invariant to attentional focus. A main effect of attentional focus was found in dorsal frontoparietal cortices, whose activity signaled task-relevant target events irrespective of emotional content. The only brain region that was sensitive to both emotion and attentional focus was the anterior cingulate gyrus (ACG). When circles were task-relevant, the ACG responded equally to circle targets and distracting emotional scenes. The ACG response to emotional scenes increased when they were task-relevant, and the response to circles concomitantly decreased. These findings support and extend prominent network theories of emotion-attention interactions that highlight the integrative role played by the anterior cingulate.Item Open Access Eye fields in the frontal lobes of primates.(Brain Res Brain Res Rev, 2000-04) Tehovnik, EJ; Sommer, MA; Chou, IH; Slocum, WM; Schiller, PHTwo eye fields have been identified in the frontal lobes of primates: one is situated dorsomedially within the frontal cortex and will be referred to as the eye field within the dorsomedial frontal cortex (DMFC); the other resides dorsolaterally within the frontal cortex and is commonly referred to as the frontal eye field (FEF). This review documents the similarities and differences between these eye fields. Although the DMFC and FEF are both active during the execution of saccadic and smooth pursuit eye movements, the FEF is more dedicated to these functions. Lesions of DMFC minimally affect the production of most types of saccadic eye movements and have no effect on the execution of smooth pursuit eye movements. In contrast, lesions of the FEF produce deficits in generating saccades to briefly presented targets, in the production of saccades to two or more sequentially presented targets, in the selection of simultaneously presented targets, and in the execution of smooth pursuit eye movements. For the most part, these deficits are prevalent in both monkeys and humans. Single-unit recording experiments have shown that the DMFC contains neurons that mediate both limb and eye movements, whereas the FEF seems to be involved in the execution of eye movements only. Imaging experiments conducted on humans have corroborated these findings. A feature that distinguishes the DMFC from the FEF is that the DMFC contains a somatotopic map with eyes represented rostrally and hindlimbs represented caudally; the FEF has no such topography. Furthermore, experiments have revealed that the DMFC tends to contain a craniotopic (i.e., head-centered) code for the execution of saccadic eye movements, whereas the FEF contains a retinotopic (i.e., eye-centered) code for the elicitation of saccades. Imaging and unit recording data suggest that the DMFC is more involved in the learning of new tasks than is the FEF. Also with continued training on behavioural tasks the responsivity of the DMFC tends to drop. Accordingly, the DMFC is more involved in learning operations whereas the FEF is more specialized for the execution of saccadic and smooth pursuit eye movements.Item Open Access Fibroblast growth factor23 is associated with axonal integrity and neural network architecture in the human frontal lobes.(PloS one, 2018-01) Marebwa, Barbara K; Adams, Robert J; Magwood, Gayenell S; Kindy, Mark; Wilmskoetter, Janina; Wolf, Myles; Bonilha, LeonardoElevated levels of FGF23 in individuals with chronic kidney disease (CKD) are associated with adverse health outcomes, such as increased mortality, large vessel disease, and reduced white matter volume, cardiovascular and cerebrovascular events. Apart from the well-known link between cardiovascular (CV) risk factors, especially diabetes and hypertension, and cerebrovascular damage, elevated FGF23 is also postulated to be associated with cerebrovascular damage independently of CKD. Elevated FGF23 predisposes to vascular calcification and is associated with vascular stiffness and endothelial dysfunction in the general population with normal renal function. These factors may lead to microangiopathic changes in the brain, cumulative ischemia, and eventually to the loss of white matter fibers. The relationship between FGF23 and brain integrity in individuals without CKD has hitherto not been investigated. In this study, we aimed to determine the association between FGF23, and white matter integrity in a cohort of 50 participants with varying degrees of CV risk burden, using high resolution structural human brain connectomes constructed from MRI diffusion images. We observed that increased FGF23 was associated with axonal loss in the frontal lobe, leading to a fragmentation of white matter network organization. This study provides the first description of the relationship between elevated levels of FGF23, white matter integrity, and brain health. We suggest a synergistic interaction of CV risk factors and FGF23 as a potentially novel determinant of brain health.Item Open Access Frontal eye field neurons assess visual stability across saccades.(J Neurosci, 2012-02-22) Crapse, Trinity B; Sommer, Marc AThe image on the retina may move because the eyes move, or because something in the visual scene moves. The brain is not fooled by this ambiguity. Even as we make saccades, we are able to detect whether visual objects remain stable or move. Here we test whether this ability to assess visual stability across saccades is present at the single-neuron level in the frontal eye field (FEF), an area that receives both visual input and information about imminent saccades. Our hypothesis was that neurons in the FEF report whether a visual stimulus remains stable or moves as a saccade is made. Monkeys made saccades in the presence of a visual stimulus outside of the receptive field. In some trials, the stimulus remained stable, but in other trials, it moved during the saccade. In every trial, the stimulus occupied the center of the receptive field after the saccade, thus evoking a reafferent visual response. We found that many FEF neurons signaled, in the strength and timing of their reafferent response, whether the stimulus had remained stable or moved. Reafferent responses were tuned for the amount of stimulus translation, and, in accordance with human psychophysics, tuning was better (more prevalent, stronger, and quicker) for stimuli that moved perpendicular, rather than parallel, to the saccade. Tuning was sometimes present as well for nonspatial transaccadic changes (in color, size, or both). Our results indicate that FEF neurons evaluate visual stability during saccades and may be general purpose detectors of transaccadic visual change.Item Open Access Functional parcellation of attentional control regions of the brain.(J Cogn Neurosci, 2004-01) Woldorff, Marty G; Hazlett, Chad J; Fichtenholtz, Harlan M; Weissman, Daniel H; Dale, Anders M; Song, Allen WRecently, a number of investigators have examined the neural loci of psychological processes enabling the control of visual spatial attention using cued-attention paradigms in combination with event-related functional magnetic resonance imaging. Findings from these studies have provided strong evidence for the involvement of a fronto-parietal network in attentional control. In the present study, we build upon this previous work to further investigate these attentional control systems. In particular, we employed additional controls for nonattentional sensory and interpretative aspects of cue processing to determine whether distinct regions in the fronto-parietal network are involved in different aspects of cue processing, such as cue-symbol interpretation and attentional orienting. In addition, we used shorter cue-target intervals that were closer to those used in the behavioral and event-related potential cueing literatures. Twenty participants performed a cued spatial attention task while brain activity was recorded with functional magnetic resonance imaging. We found functional specialization for different aspects of cue processing in the lateral and medial subregions of the frontal and parietal cortex. In particular, the medial subregions were more specific to the orienting of visual spatial attention, while the lateral subregions were associated with more general aspects of cue processing, such as cue-symbol interpretation. Additional cue-related effects included differential activations in midline frontal regions and pretarget enhancements in the thalamus and early visual cortical areas.Item Open Access Influence of the thalamus on spatial visual processing in frontal cortex.(Nature, 2006-11-16) Sommer, Marc A; Wurtz, Robert HEach of our movements activates our own sensory receptors, and therefore keeping track of self-movement is a necessary part of analysing sensory input. One way in which the brain keeps track of self-movement is by monitoring an internal copy, or corollary discharge, of motor commands. This concept could explain why we perceive a stable visual world despite our frequent quick, or saccadic, eye movements: corollary discharge about each saccade would permit the visual system to ignore saccade-induced visual changes. The critical missing link has been the connection between corollary discharge and visual processing. Here we show that such a link is formed by a corollary discharge from the thalamus that targets the frontal cortex. In the thalamus, neurons in the mediodorsal nucleus relay a corollary discharge of saccades from the midbrain superior colliculus to the cortical frontal eye field. In the frontal eye field, neurons use corollary discharge to shift their visual receptive fields spatially before saccades. We tested the hypothesis that these two components-a pathway for corollary discharge and neurons with shifting receptive fields-form a circuit in which the corollary discharge drives the shift. First we showed that the known spatial and temporal properties of the corollary discharge predict the dynamic changes in spatial visual processing of cortical neurons when saccades are made. Then we moved from this correlation to causation by isolating single cortical neurons and showing that their spatial visual processing is impaired when corollary discharge from the thalamus is interrupted. Thus the visual processing of frontal neurons is spatiotemporally matched with, and functionally dependent on, corollary discharge input from the thalamus. These experiments establish the first link between corollary discharge and visual processing, delineate a brain circuit that is well suited for mediating visual stability, and provide a framework for studying corollary discharge in other sensory systems.Item Open Access Neuronal correlates of metacognition in primate frontal cortex.(Neuron, 2012-08-09) Middlebrooks, Paul G; Sommer, Marc AHumans are metacognitive: they monitor and control their cognition. Our hypothesis was that neuronal correlates of metacognition reside in the same brain areas responsible for cognition, including frontal cortex. Recent work demonstrated that nonhuman primates are capable of metacognition, so we recorded from single neurons in the frontal eye field, dorsolateral prefrontal cortex, and supplementary eye field of monkeys (Macaca mulatta) that performed a metacognitive visual-oculomotor task. The animals made a decision and reported it with a saccade, but received no immediate reward or feedback. Instead, they had to monitor their decision and bet whether it was correct. Activity was correlated with decisions and bets in all three brain areas, but putative metacognitive activity that linked decisions to appropriate bets occurred exclusively in the SEF. Our results offer a survey of neuronal correlates of metacognition and implicate the SEF in linking cognitive functions over short periods of time.Item Open Access Response-level processing during visual feature search: Effects of frontoparietal activation and adult age.(Attention, perception & psychophysics, 2020-01) Madden, David J; Siciliano, Rachel E; Tallman, Catherine W; Monge, Zachary A; Voss, Andreas; Cohen, Jessica RPrevious research suggests that feature search performance is relatively resistant to age-related decline. However, little is known regarding the neural mechanisms underlying the age-related constancy of feature search. In this experiment, we used a diffusion decision model of reaction time (RT), and event-related functional magnetic resonance imaging (fMRI) to investigate age-related differences in response-level processing during visual feature search. Participants were 80 healthy, right-handed, community-dwelling individuals, 19-79 years of age. Analyses of search performance indicated that targets accompanied by response-incompatible distractors were associated with a significant increase in the nondecision-time (t0) model parameter, possibly reflecting the additional time required for response execution. Nondecision time increased significantly with increasing age, but no age-related effects were evident in drift rate, cautiousness (boundary separation, a), or in the specific effects of response compatibility. Nondecision time was also associated with a pattern of activation and deactivation in frontoparietal regions. The relation of age to nondecision time was indirect, mediated by this pattern of frontoparietal activation and deactivation. Response-compatible and -incompatible trials were associated with specific patterns of activation in the medial and superior parietal cortex, and frontal eye field, but these activation effects did not mediate the relation between age and search performance. These findings suggest that, in the context of a highly efficient feature search task, the age-related influence of frontoparietal activation is operative at a relatively general level, which is common to the task conditions, rather than at the response level specifically.Item Open Access Reversible inactivation of macaque dorsomedial frontal cortex: effects on saccades and fixations.(Exp Brain Res, 1999-02) Sommer, MA; Tehovnik, EJNeural recording and electrical stimulation results suggest that the dorsomedial frontal cortex (DMFC) of macaque is involved in oculomotor behavior. We reversibly inactivated the DMFC using lidocaine and examined how saccadic eye movements and fixations were affected. The inactivation methods and monkeys were the same as those used in a previous study of the frontal eye field (FEF), another frontal oculomotor region. In the first stage of the present study, monkeys performed tasks that required the generation of single saccades and fixations. During 15 DMFC inactivations, we found only mild, infrequent deficits. This contrasts with our prior finding that FEF inactivation causes severe, reliable deficits in performance of these tasks. In the second stage of the study, we investigated whether DMFC inactivation affected behavior when a monkey was required to make more than one saccade and fixation. We used a double-step task: two targets were flashed in rapid succession and the monkey had to make two saccades to foveate the target locations. In each of five experiments, DMFC inactivation caused a moderate, significant deficit. Both ipsi- and contraversive saccades were disrupted. In two experiments, the first saccades were made to the wrong place and had increased latencies. In one experiment, first saccades were unaffected, but second saccades were made to the wrong place and had increased latencies. In the remaining two experiments, specific reasons for the deficit were not detected. Saline infusions into DMFC had no effect. Inactivation of FEF caused a larger double-step deficit than did inactivation of DMFC. The FEF inactivation impaired contraversive first or second saccades of the sequence. In conclusion, our results suggest that the DMFC makes an important contribution to generating sequential saccades and fixations but not single saccades and fixations. Compared with the FEF, the DMFC has a weaker, less directional, more task-dependent oculomotor influence.Item Open Access Sensory-motor transformations for speech occur bilaterally.(Nature, 2014-03-06) Cogan, Gregory B; Thesen, Thomas; Carlson, Chad; Doyle, Werner; Devinsky, Orrin; Pesaran, BijanHistorically, the study of speech processing has emphasized a strong link between auditory perceptual input and motor production output. A kind of 'parity' is essential, as both perception- and production-based representations must form a unified interface to facilitate access to higher-order language processes such as syntax and semantics, believed to be computed in the dominant, typically left hemisphere. Although various theories have been proposed to unite perception and production, the underlying neural mechanisms are unclear. Early models of speech and language processing proposed that perceptual processing occurred in the left posterior superior temporal gyrus (Wernicke's area) and motor production processes occurred in the left inferior frontal gyrus (Broca's area). Sensory activity was proposed to link to production activity through connecting fibre tracts, forming the left lateralized speech sensory-motor system. Although recent evidence indicates that speech perception occurs bilaterally, prevailing models maintain that the speech sensory-motor system is left lateralized and facilitates the transformation from sensory-based auditory representations to motor-based production representations. However, evidence for the lateralized computation of sensory-motor speech transformations is indirect and primarily comes from stroke patients that have speech repetition deficits (conduction aphasia) and studies using covert speech and haemodynamic functional imaging. Whether the speech sensory-motor system is lateralized, like higher-order language processes, or bilateral, like speech perception, is controversial. Here we use direct neural recordings in subjects performing sensory-motor tasks involving overt speech production to show that sensory-motor transformations occur bilaterally. We demonstrate that electrodes over bilateral inferior frontal, inferior parietal, superior temporal, premotor and somatosensory cortices exhibit robust sensory-motor neural responses during both perception and production in an overt word-repetition task. Using a non-word transformation task, we show that bilateral sensory-motor responses can perform transformations between speech-perception- and speech-production-based representations. These results establish a bilateral sublexical speech sensory-motor system.