Browsing by Subject "GENES"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Differential Expression of Coding and Long Noncoding RNAs in Keratoconus-Affected Corneas.(Investigative ophthalmology & visual science, 2018-06) Khaled, Mariam Lofty; Bykhovskaya, Yelena; Yablonski, Sarah ER; Li, Hanzhou; Drewry, Michelle D; Aboobakar, Inas F; Estes, Amy; Gao, X Raymond; Stamer, W Daniel; Xu, Hongyan; Allingham, R Rand; Hauser, Michael A; Rabinowitz, Yaron S; Liu, YutaoKeratoconus (KC) is the most common corneal ectasia. We aimed to determine the differential expression of coding and long noncoding RNAs (lncRNAs) in human corneas affected with KC.From the corneas of 10 KC patients and 8 non-KC healthy controls, 200 ng total RNA was used to prepare sequencing libraries with the SMARTer Stranded RNA-Seq kit after ribosomal RNA depletion, followed by paired-end 50-bp sequencing with Illumina Sequencer. Differential analysis was done using TopHat/Cufflinks with a gene file from Ensembl and a lncRNA file from NONCODE. Pathway analysis was performed using WebGestalt. Using the expression level of differentially expressed coding and noncoding RNAs in each sample, we correlated their expression levels in KC and controls separately and identified significantly different correlations in KC against controls followed by visualization using Cytoscape.Using |fold change| ≥ 2 and a false discovery rate ≤ 0.05, we identified 436 coding RNAs and 584 lncRNAs with differential expression in the KC-affected corneas. Pathway analysis indicated the enrichment of genes involved in extracellular matrix, protein binding, glycosaminoglycan binding, and cell migration. Our correlation analysis identified 296 pairs of significant KC-specific correlations containing 117 coding genes enriched in functions related to cell migration/motility, extracellular space, cytokine response, and cell adhesion. Our study highlighted the potential roles of several genes (CTGF, SFRP1, AQP5, lnc-WNT4-2:1, and lnc-ALDH3A2-2:1) and pathways (TGF-β, WNT signaling, and PI3K/AKT pathways) in KC pathogenesis.Our RNA-Seq-based differential expression and correlation analyses have identified many potential KC contributing coding and noncoding RNAs.Item Open Access Divergence times and the evolution of epiphytism in filmy ferns (Hymenophyllaceae) revisited(International Journal of Plant Sciences, 2008-11-01) Hennequin, S; Schuettpelz, E; Pryer, KM; Ebihara, A; Dubuisson, JAlthough the phylogeny of the filmy fern family (Hymenophyllaceae) is rapidly coming into focus, much remains to be uncovered concerning the evolutionary history of this clade. In this study, we use two data sets (108-taxon rbcL+ rps4, 204-taxon rbcL) and fossil constraints to examine the diversification of filmy ferns and the evolution of their ecology within a temporal context. Our penalized likelihood analyses (with both data sets) indicate that the initial divergences within the Hymenophyllaceae (resulting in extant lineages) and those within one of the two major clades (trichomanoids) occurred in the early to middle Mesozoic. There was a considerable delay in the crown group diversification of the other major clade (hymenophylloids), which began to diversify only in the Cretaceous. Maximum likelihood and Bayesian character state reconstructions across the broadly sampled single-gene (rbcL) phylogeny do not allow us to unequivocally infer the ancestral habit for the family or for its two major clades. However, adding a second gene (rps4) with a more restricted taxon sampling results in a hypothesis in which filmy ferns were ancestrally terrestrial, with epiphytism having evolved several times independently during the Cretaceous. © 2008 by The University of Chicago. All rights reserved.Item Open Access Phylogeny and relationships of the neotropical Adiantum raddianum group (Pteridaceae)(Taxon, 2016-12-01) Hirai, RY; Schuettpelz, E; Huiet, L; Pryer, KM; Smith, AR; Prado, J© International Association for Plant Taxonomy (IAPT) 2016. With more than 200 species, the maidenhair fern genus Adiantum is among the top ten most diverse fern genera. Adiantum is pantropical in distribution and, due to the presence of a unique synapomorphy (sporangia borne on indusia rather than laminae), perhaps the most easily recognized fern genus. Many of its members, including numerous cultivars derived from A. raddianum, are grown as ornamentals. Because of its size, a comprehensive taxonomic study of Adiantum is difficult and the genus is perhaps better approached through a series of narrower studies. Here, we focus specifically on A. raddianum and putative allies. We find a newly defined A. raddianum group to be strongly supported as monophyletic and segregated from other maidenhair ferns on the basis of genetic as well as morphological characteristics. Bayesian inference and maximum likelihood analyses of plastid atpA, chlL, chlN, rbcL, and rpoA sequences support the A raddianum clade as sister to A poiretii and its allies. We identify round-reniform indusia to be a characteristic of the A.raddianum group (vs. lunate in the A.poiretii group). Additionally, we find species in the Apoiretii group to differ in having a unique 66 nucleotide deletion in our chlN gene alignment. The neotropical Araddianum group comprises at least 17 species (14 studied here), some widely distributed; one was recently described (A. alan-smithii).