Browsing by Subject "Gap Junctions"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Dopaminergic modulation of retinal processing from starlight to sunlight.(Journal of pharmacological sciences, 2019-05-04) Roy, Suva; Field, Greg DNeuromodulators such as dopamine, enable context-dependent plasticity of neural circuit function throughout the central nervous system. For example, in the retina, dopamine tunes visual processing for daylight and nightlight conditions. Specifically, high levels of dopamine release in the retina tune vision for daylight (photopic) conditions, while low levels tune it for nightlight (scotopic) conditions. This review covers the cellular and circuit-level mechanisms within the retina that are altered by dopamine. These mechanisms include changes in gap junction coupling and ionic conductances, both of which are altered by the activation of diverse types of dopamine receptors across diverse types of retinal neurons. We contextualize the modulatory actions of dopamine in terms of alterations and optimizations to visual processing under photopic and scotopic conditions, with particular attention to how they differentially impact distinct cell types. Finally, we discuss how transgenic mice and disease models have shaped our understanding of dopaminergic signaling and its role in visual processing. Cumulatively, this review illustrates some of the diverse and potent mechanisms through which neuromodulation can shape brain function.Item Open Access High-sensitivity rod photoreceptor input to the blue-yellow color opponent pathway in macaque retina.(Nat Neurosci, 2009-09) Field, Greg D; Greschner, Martin; Gauthier, Jeffrey L; Rangel, Carolina; Shlens, Jonathon; Sher, Alexander; Marshak, David W; Litke, Alan M; Chichilnisky, EJSmall bistratified cells (SBCs) in the primate retina carry a major blue-yellow opponent signal to the brain. We found that SBCs also carry signals from rod photoreceptors, with the same sign as S cone input. SBCs exhibited robust responses under low scotopic conditions. Physiological and anatomical experiments indicated that this rod input arose from the AII amacrine cell-mediated rod pathway. Rod and cone signals were both present in SBCs at mesopic light levels. These findings have three implications. First, more retinal circuits may multiplex rod and cone signals than were previously thought to, efficiently exploiting the limited number of optic nerve fibers. Second, signals from AII amacrine cells may diverge to most or all of the approximately 20 retinal ganglion cell types in the peripheral primate retina. Third, rod input to SBCs may be the substrate for behavioral biases toward perception of blue at mesopic light levels.