Browsing by Subject "Gene Deletion"
Now showing 1 - 17 of 17
Results Per Page
Sort Options
Item Open Access Characterization of the FKBP12-Encoding Genes in Aspergillus fumigatus.(PLoS One, 2015) Falloon, Katie; Juvvadi, Praveen R; Richards, Amber D; Vargas-Muñiz, José M; Renshaw, Hilary; Steinbach, William JInvasive aspergillosis, largely caused by Aspergillus fumigatus, is responsible for a growing number of deaths among immunosuppressed patients. Immunosuppressants such as FK506 (tacrolimus) that target calcineurin have shown promise for antifungal drug development. FK506-binding proteins (FKBPs) form a complex with calcineurin in the presence of FK506 (FKBP12-FK506) and inhibit calcineurin activity. Research on FKBPs in fungi is limited, and none of the FKBPs have been previously characterized in A. fumigatus. We identified four orthologous genes of FKBP12, the human FK506 binding partner, in A. fumigatus and designated them fkbp12-1, fkbp12-2, fkbp12-3, and fkbp12-4. Deletional analysis of the four genes revealed that the Δfkbp12-1 strain was resistant to FK506, indicating FKBP12-1 as the key mediator of FK506-binding to calcineurin. The endogenously expressed FKBP12-1-EGFP fusion protein localized to the cytoplasm and nuclei under normal growth conditions but also to the hyphal septa following FK506 treatment, revealing its interaction with calcineurin. The FKBP12-1-EGFP fusion protein didn't localize at the septa in the presence of FK506 in the cnaA deletion background, confirming its interaction with calcineurin. Testing of all deletion strains in the Galleria mellonella model of aspergillosis suggested that these proteins don't play an important role in virulence. While the Δfkbp12-2 and Δfkbp12-3 strains didn't show any discernable phenotype, the Δfkbp12-4 strain displayed slight growth defect under normal growth conditions and inhibition of the caspofungin-mediated "paradoxical growth effect" at higher concentrations of the antifungal caspofungin. Together, these results indicate that while only FKBP12-1 is the bona fide binding partner of FK506, leading to the inhibition of calcineurin in A. fumigatus, FKBP12-4 may play a role in basal growth and the caspofungin-mediated paradoxical growth response. Exploitation of differences between A. fumigatus FKBP12-1 and human FKBP12 will be critical for the generation of fungal-specific FK506 analogs to inhibit fungal calcineurin and treat invasive fungal disease.Item Open Access Complement C4 inhibits systemic autoimmunity through a mechanism independent of complement receptors CR1 and CR2.(J Exp Med, 2000-11-06) Chen, Z; Koralov, SB; Kelsoe, GThe complement system enhances antibody responses to T-dependent antigens, but paradoxically, deficiencies in C1 and C4 are strongly linked to autoantibody production in humans. In mice, disruption of the C1qa gene also results in spontaneous autoimmunity. Moreover, deficiencies in C4 or complement receptors 1 and 2 (CR1/CR2) lead to reduced selection against autoreactive B cells and impaired humoral responses. These observations suggest that C1 and C4 act through CR1/CR2 to enhance humoral immunity and somehow suppress autoimmunity. Here we report high titers of spontaneous antinuclear antibody (ANA) in C4(-/)- mice. This systemic lupus erythematosus-like autoimmunity is highly penetrant; by 10 mo of age, all C4(-)(/)- females and most males produced ANA. In contrast, titers and frequencies of ANA in Cr2(-)(/)- mice, which are deficient in CR1 and CR2, never rose significantly above those in normal controls. Glomerular deposition of immune complexes (ICs), glomerulonephritis, and splenomegaly were observed in C4(-)(/)- but not Cr2(-)(/)- mice. C4(-)(/)-, but not Cr2(-)(/)-, mice accumulate activated T and B cells. Clearance of circulating ICs is impaired in preautoimmune C4(-)(/)-, but not Cr2(-)(/)-, mice. C4 deficiency causes spontaneous, lupus-like autoimmunity through a mechanism that is independent of CR1/CR2.Item Open Access Effects of neuronal PIK3C3/Vps34 deletion on autophagy and beyond.(Autophagy, 2010-08) Zhou, Xiang; Wang, FanPIK3C3/Vps34 plays important roles in the endocytic and autophagic pathways, both of which are essential for maintaining neuronal integrity. However, it is unclear how inactivating PIK3C3 may affect neuronal endosomal versus autophagic processes in vivo. We generated a conditional null allele of the Pik3c3 gene in mouse, and specifically deleted it in postmitotic sensory neurons. Subsequent analyses reveal several interesting and surprising findings.Item Open Access Ferrochelatase is a conserved downstream target of the blue light-sensing White collar complex in fungi.(Microbiology, 2010-08) Idnurm, Alexander; Heitman, JosephLight is a universal signal perceived by organisms, including fungi, in which light regulates common and unique biological processes depending on the species. Previous research has established that conserved proteins, originally called White collar 1 and 2 from the ascomycete Neurospora crassa, regulate UV/blue light sensing. Homologous proteins function in distant relatives of N. crassa, including the basidiomycetes and zygomycetes, which diverged as long as a billion years ago. Here we conducted microarray experiments on the basidiomycete fungus Cryptococcus neoformans to identify light-regulated genes. Surprisingly, only a single gene was induced by light above the commonly used twofold threshold. This gene, HEM15, is predicted to encode a ferrochelatase that catalyses the final step in haem biosynthesis from highly photoreactive porphyrins. The C. neoformans gene complements a Saccharomyces cerevisiae hem15Delta strain and is essential for viability, and the Hem15 protein localizes to mitochondria, three lines of evidence that the gene encodes ferrochelatase. Regulation of HEM15 by light suggests a mechanism by which bwc1/bwc2 mutants are photosensitive and exhibit reduced virulence. We show that ferrochelatase is also light-regulated in a white collar-dependent fashion in N. crassa and the zygomycete Phycomyces blakesleeanus, indicating that ferrochelatase is an ancient target of photoregulation in the fungal kingdom.Item Restricted Genomic signatures of near-extinction and rebirth of the crested ibis and other endangered bird species(GENOME BIOLOGY, 2014) Li, Shengbin; Li, Bo; Cheng, Cheng; Xiong, Zijun; Liu, Qingbo; Lai, Jianghua; Carey, Hannah V; Zhang, Qiong; Zheng, Haibo; Wei, Shuguang; Zhang, Hongbo; Chang, Liao; Liu, Shiping; Zhang, Shanxin; Yu, Bing; Zeng, Xiaofan; Hou, Yong; Nie, Wenhui; Guo, Youmin; Chen, Teng; Han, Jiuqiang; Wang, Jian; Wang, Jun; Chen, Chen; Liu, Jiankang; Stambrook, Peter J; Xu, Ming; Zhang, Guojie; Gilbert, M Thomas P; Yang, Huanming; Jarvis, Erich D; Yu, Jun; Yan, JianqunBACKGROUND: Nearly one-quarter of all avian species is either threatened or nearly threatened. Of these, 73 species are currently being rescued from going extinct in wildlife sanctuaries. One of the previously most critically-endangered is the crested ibis, Nipponia nippon. Once widespread across North-East Asia, by 1981 only seven individuals from two breeding pairs remained in the wild. The recovering crested ibis populations thus provide an excellent example for conservation genomics since every individual bird has been recruited for genomic and demographic studies. RESULTS: Using high-quality genome sequences of multiple crested ibis individuals, its thriving co-habitant, the little egret, Egretta garzetta, and the recently sequenced genomes of 41 other avian species that are under various degrees of survival threats, including the bald eagle, we carry out comparative analyses for genomic signatures of near extinction events in association with environmental and behavioral attributes of species. We confirm that both loss of genetic diversity and enrichment of deleterious mutations of protein-coding genes contribute to the major genetic defects of the endangered species. We further identify that genetic inbreeding and loss-of-function genes in the crested ibis may all constitute genetic susceptibility to other factors including long-term climate change, over-hunting, and agrochemical overuse. We also establish a genome-wide DNA identification platform for molecular breeding and conservation practices, to facilitate sustainable recovery of endangered species. CONCLUSIONS: These findings demonstrate common genomic signatures of population decline across avian species and pave a way for further effort in saving endangered species and enhancing conservation genomic efforts.Item Open Access Inefficient dystrophin expression after cord blood transplantation in Duchenne muscular dystrophy.(Muscle & nerve, 2010-06) Kang, Peter B; Lidov, Hart GW; White, Alexander J; Mitchell, Matthew; Balasubramanian, Anuradha; Estrella, Elicia; Bennett, Richard R; Darras, Basil T; Shapiro, Frederic D; Bambach, Barbara J; Kurtzberg, Joanne; Gussoni, Emanuela; Kunkel, Louis MWe report a boy who received two allogeneic stem cell transplantations from umbilical cord donors to treat chronic granulomatous disease (CGD). The CGD was cured after the second transplantation, but 2.5 years later he was diagnosed with Duchenne muscular dystrophy (DMD). Examinations of his DNA, muscle tissue, and myoblast cultures derived from muscle tissue were performed to determine whether any donor dystrophin was being expressed. The boy was found to have a large-scale deletion on the X chromosome that spanned the loci for CYBB and DMD. The absence of dystrophin led to muscle histology characteristic of DMD. Analysis of myofibers demonstrated no definite donor cell engraftment. This case suggests that umbilical cord-derived hematopoietic stem cell transplantation will not be efficacious in the therapy of DMD without additional interventions that induce engraftment of donor cells in skeletal muscle.Item Open Access Modulation of bacterial outer membrane vesicle production by envelope structure and content.(BMC Microbiol, 2014-12-21) Schwechheimer, Carmen; Kulp, Adam; Kuehn, Meta JBACKGROUND: Vesiculation is a ubiquitous secretion process of Gram-negative bacteria, where outer membrane vesicles (OMVs) are small spherical particles on the order of 50 to 250 nm composed of outer membrane (OM) and lumenal periplasmic content. Vesicle functions have been elucidated in some detail, showing their importance in virulence factor secretion, bacterial survival, and biofilm formation in pathogenesis. Furthermore, OMVs serve as an envelope stress response, protecting the secreting bacteria from internal protein misfolding stress, as well as external envelope stressors. Despite their important functional roles very little is known about the regulation and mechanism of vesicle production. Based on the envelope architecture and prior characterization of the hypervesiculation phenotypes for mutants lacking the lipoprotein, Lpp, which is involved in the covalent OM-peptidoglycan (PG) crosslinks, it is expected that an inverse relationship exists between OMV production and PG-crosslinked Lpp. RESULTS: In this study, we found that subtle modifications of PG remodeling and crosslinking modulate OMV production, inversely correlating with bound Lpp levels. However, this inverse relationship was not found in strains in which OMV production is driven by an increase in "periplasmic pressure" resulting from the accumulation of protein, PG fragments, or lipopolysaccharide. In addition, the characterization of an nlpA deletion in backgrounds lacking either Lpp- or OmpA-mediated envelope crosslinks demonstrated a novel role for NlpA in envelope architecture. CONCLUSIONS: From this work, we conclude that OMV production can be driven by distinct Lpp concentration-dependent and Lpp concentration-independent pathways.Item Open Access Mutational profile and prognostic significance of TP53 in diffuse large B-cell lymphoma patients treated with R-CHOP: report from an International DLBCL Rituximab-CHOP Consortium Program Study.(Blood, 2012-11) Xu-Monette, Zijun Y; Wu, Lin; Visco, Carlo; Tai, Yu Chuan; Tzankov, Alexander; Liu, Wei-min; Montes-Moreno, Santiago; Dybkaer, Karen; Chiu, April; Orazi, Attilio; Zu, Youli; Bhagat, Govind; Richards, Kristy L; Hsi, Eric D; Zhao, X Frank; Choi, William WL; Zhao, Xiaoying; van Krieken, J Han; Huang, Qin; Huh, Jooryung; Ai, Weiyun; Ponzoni, Maurilio; Ferreri, Andrés JM; Zhou, Fan; Kahl, Brad S; Winter, Jane N; Xu, Wei; Li, Jianyong; Go, Ronald S; Li, Yong; Piris, Miguel A; Møller, Michael B; Miranda, Roberto N; Abruzzo, Lynne V; Medeiros, L Jeffrey; Young, Ken HTP53 mutation is an independent marker of poor prognosis in patients with diffuse large B-cell lymphoma (DLBCL) treated with cyclophosphamide, hydroxydaunorubicin, vincristine, and prednisone (CHOP) therapy. However, its prognostic value in the rituximab immunochemotherapy era remains undefined. In the present study of a large cohort of DLBCL patients treated with rituximab plus CHOP (R-CHOP), we show that those with TP53 mutations had worse overall and progression-free survival compared with those without. Unlike earlier studies of patients treated with CHOP, TP53 mutation has predictive value for R-CHOP-treated patients with either the germinal center B-cell or activated B-cell DLBCL subtypes. Furthermore, we identified the loop-sheet-helix and L3 motifs in the DNA-binding domain to be the most critical structures for maintaining p53 function. In contrast, TP53 deletion and loss of heterozygosity did not confer worse survival. If gene mutation data are not available, immunohistochemical analysis showing > 50% cells expressing p53 protein is a useful surrogate and was able to stratify patients with significantly different prognoses. We conclude that assessment of TP53 mutation status is important for stratifying R-CHOP-treated patients into distinct prognostic subsets and has significant value in the design of future therapeutic strategies.Item Open Access NlpI-mediated modulation of outer membrane vesicle production through peptidoglycan dynamics in Escherichia coli.(Microbiologyopen, 2015-06) Schwechheimer, Carmen; Rodriguez, Daniel L; Kuehn, Meta JOuter membrane vesicles (OMVs) are ubiquitously secreted from the outer membrane (OM) of Gram-negative bacteria. These heterogeneous structures are composed of OM filled with periplasmic content from the site of budding. By analyzing mutants that have vesicle production phenotypes, we can gain insight into the mechanism of OMV budding in wild-type cells, which has thus far remained elusive. In this study, we present data demonstrating that the hypervesiculation phenotype of the nlpI deletion mutant of Escherichia coli correlates with changes in peptidoglycan (PG) dynamics. Our data indicate that in stationary phase cultures the nlpI mutant exhibits increased PG synthesis that is dependent on spr, consistent with a model in which NlpI controls the activity of the PG endopeptidase Spr. In log phase, the nlpI mutation was suppressed by a dacB mutation, suggesting that NlpI regulates penicillin-binding protein 4 (PBP4) during exponential growth. The data support a model in which NlpI negatively regulates PBP4 activity during log phase, and Spr activity during stationary phase, and that in the absence of NlpI, the cell survives by increasing PG synthesis. Further, the nlpI mutant exhibited a significant decrease in covalent outer membrane (OM-PG) envelope stabilizing cross-links, consistent with its high level of OMV production. Based on these results, we propose that one mechanism wild-type Gram-negative bacteria can use to modulate vesiculation is by altering PG-OM cross-linking via localized modulation of PG degradation and synthesis.Item Open Access NLRP3 signaling drives macrophage-induced adaptive immune suppression in pancreatic carcinoma.(The Journal of experimental medicine, 2017-06) Daley, Donnele; Mani, Vishnu R; Mohan, Navyatha; Akkad, Neha; Pandian, Gautam SD Balasubramania; Savadkar, Shivraj; Lee, Ki Buom; Torres-Hernandez, Alejandro; Aykut, Berk; Diskin, Brian; Wang, Wei; Farooq, Mohammad S; Mahmud, Arif I; Werba, Gregor; Morales, Eduardo J; Lall, Sarah; Wadowski, Benjamin J; Rubin, Amanda G; Berman, Matthew E; Narayanan, Rajkishen; Hundeyin, Mautin; Miller, GeorgeThe tumor microenvironment (TME) in pancreatic ductal adenocarcinoma (PDA) is characterized by immune tolerance, which enables disease to progress unabated by adaptive immunity. However, the drivers of this tolerogenic program are incompletely defined. In this study, we found that NLRP3 promotes expansion of immune-suppressive macrophages in PDA. NLRP3 signaling in macrophages drives the differentiation of CD4+ T cells into tumor-promoting T helper type 2 cell (Th2 cell), Th17 cell, and regulatory T cell populations while suppressing Th1 cell polarization and cytotoxic CD8+ T cell activation. The suppressive effects of NLRP3 signaling were IL-10 dependent. Pharmacological inhibition or deletion of NLRP3, ASC (apoptosis-associated speck-like protein containing a CARD complex), or caspase-1 protected against PDA and was associated with immunogenic reprogramming of innate and adaptive immunity within the TME. Similarly, transfer of PDA-entrained macrophages or T cells from NLRP3-/- hosts was protective. These data suggest that targeting NLRP3 holds the promise for the immunotherapy of PDA.Item Open Access Prevalent mutator genotype identified in fungal pathogen Candida glabrata promotes multi-drug resistance.(Nature communications, 2016-03) Healey, Kelley R; Zhao, Yanan; Perez, Winder B; Lockhart, Shawn R; Sobel, Jack D; Farmakiotis, Dimitrios; Kontoyiannis, Dimitrios P; Sanglard, Dominique; Taj-Aldeen, Saad J; Alexander, Barbara D; Jimenez-Ortigosa, Cristina; Shor, Erika; Perlin, David SThe fungal pathogen Candida glabrata has emerged as a major health threat since it readily acquires resistance to multiple drug classes, including triazoles and/or echinocandins. Thus far, cellular mechanisms promoting the emergence of resistance to multiple drug classes have not been described in this organism. Here we demonstrate that a mutator phenotype caused by a mismatch repair defect is prevalent in C. glabrata clinical isolates. Strains carrying alterations in mismatch repair gene MSH2 exhibit a higher propensity to breakthrough antifungal treatment in vitro and in mouse models of colonization, and are recovered at a high rate (55% of all C. glabrata recovered) from patients. This genetic mechanism promotes the acquisition of resistance to multiple antifungals, at least partially explaining the elevated rates of triazole and multi-drug resistance associated with C. glabrata. We anticipate that identifying MSH2 defects in infecting strains may influence the management of patients on antifungal drug therapy.Item Open Access Reduced junctional Na+/Ca2+-exchanger activity contributes to sarcoplasmic reticulum Ca2+ leak in junctophilin-2-deficient mice.(American journal of physiology. Heart and circulatory physiology, 2014-11) Wang, W; Landstrom, AP; Wang, Q; Munro, ML; Beavers, D; Ackerman, MJ; Soeller, C; Wehrens, XHTExpression silencing of junctophilin-2 (JPH2) in mouse heart leads to ryanodine receptor type 2 (RyR2)-mediated sarcoplasmic reticulum (SR) Ca(2+) leak and rapid development of heart failure. The mechanism and physiological significance of JPH2 in regulating RyR2-mediated SR Ca(2+) leak remains elusive. We sought to elucidate the role of JPH2 in regulating RyR2-mediated SR Ca(2+) release in the setting of cardiac failure. Cardiac myocytes isolated from tamoxifen-inducible conditional knockdown mice of JPH2 (MCM-shJPH2) were subjected to confocal Ca(2+) imaging. MCM-shJPH2 cardiomyocytes exhibited an increased spark frequency width with altered spark morphology, which caused increased SR Ca(2+) leakage. Single channel studies identified an increased RyR2 open probability in MCM-shJPH2 mice. The increase in spark frequency and width was observed only in MCM-shJPH2 and not found in mice with increased RyR2 open probability with native JPH2 expression. Na(+)/Ca(2+)-exchanger (NCX) activity was reduced by 50% in MCM-shJPH2 with no detectable change in NCX expression. Additionally, 50% inhibition of NCX through Cd(2+) administration alone was sufficient to increase spark width in myocytes obtained from wild-type mice. Additionally, superresolution analysis of RyR2 and NCX colocalization showed a reduced overlap between RyR2 and NCX in MCM-shJPH2 mice. In conclusion, decreased JPH2 expression causes increased SR Ca(2+) leakage by directly increasing open probability of RyR2 and by indirectly reducing junctional NCX activity through increased dyadic cleft Ca(2+). This demonstrates two novel and independent cellular mechanisms by which JPH2 regulates RyR2-mediated SR Ca(2+) leak and heart failure development.Item Open Access RNA-Seq and ChIP-Seq reveal SQSTM1/p62 as a key mediator of JunB suppression of NF-κB-dependent inflammation.(J Invest Dermatol, 2015-04) Zhang, Xiaoling; Jin, Jane Y; Wu, Joseph; Qin, Xiaoxia; Streilein, Robert; Hall, Russell P; Zhang, Jennifer YMice with epidermal deletion of JunB transcription factor displayed a psoriasis-like inflammation. The relevance of these findings to humans and the mechanisms mediating JunB function are not fully understood. Here we demonstrate that impaired JunB function via gene silencing or overexpression of a dominant negative mutant increased human keratinocyte cell proliferation but decreased cell barrier function. RNA-seq revealed over 500 genes affected by JunB loss of function, which included the upregulation of an array of proinflammatory molecules relevant to psoriasis. Among these were tumor necrosis factor α (TNFα), CCL2, CXCL10, IL6R, and SQSTM1, an adaptor protein involved in nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation. Chromatin immunoprecipitation (ChIP)-Seq and gene reporter analyses showed that JunB directly suppressed SQSTM1 by binding to a consensus AP-1 cis element located around 2 kb upstream of SQSTM1-transcription start site. Similar to JunB loss of function, SQSTM1-overexpression induced TNFα, CCL2, and CXCL10. Conversely, NF-κB inhibition genetically with a mutant IκBα or pharmacologically with pyrrolidine dithiocarbamate (PDTC) prevented cytokine, but not IL6R, induction by JunB deficiency. Taken together, our findings indicate that JunB controls epidermal growth, barrier formation, and proinflammatory responses through direct and indirect mechanisms, pinpointing SQSTM1 as a key mediator of JunB suppression of NF-κB-dependent inflammation.Item Open Access Sensitization of Vascular Endothelial Cells to Ionizing Radiation Promotes the Development of Delayed Intestinal Injury in Mice.(Radiation research, 2019-09) Lee, Chang-Lung; Daniel, Andrea R; Holbrook, Matt; Brownstein, Jeremy; Silva Campos, Lorraine Da; Hasapis, Stephanie; Ma, Yan; Borst, Luke B; Badea, Cristian T; Kirsch, David GExposure of the gastrointestinal (GI) tract to ionizing radiation can cause acute and delayed injury. However, critical cellular targets that regulate the development of radiation-induced GI injury remain incompletely understood. Here, we investigated the role of vascular endothelial cells in controlling acute and delayed GI injury after total-abdominal irradiation (TAI). To address this, we used genetically engineered mice in which endothelial cells are sensitized to radiation due to the deletion of the tumor suppressor p53. Remarkably, we found that VE-cadherin-Cre; p53FL/FL mice, in which both alleles of p53 are deleted in endothelial cells, were not sensitized to the acute GI radiation syndrome, but these mice were highly susceptible to delayed radiation enteropathy. Histological examination indicated that VE-cadherin-Cre; p53FL/FL mice that developed delayed radiation enteropathy had severe vascular injury in the small intestine, which was manifested by hemorrhage, loss of microvessels and tissue hypoxia. In addition, using dual-energy CT imaging, we showed that VE-cadherin-Cre; p53FL/FL mice had a significant increase in vascular permeability of the small intestine in vivo 28 days after TAI. Together, these findings demonstrate that while sensitization of endothelial cells to radiation does not exacerbate the acute GI radiation syndrome, it is sufficient to promote the development of late radiation enteropathy.Item Open Access STIM1-Ca2+ signaling in coronary sinus cardiomyocytes contributes to interatrial conduction.(Cell calcium, 2020-05) Zhang, Hengtao; Bryson, Victoria; Luo, Nancy; Sun, Albert Y; Rosenberg, PaulPacemaker action potentials emerge from the sinoatrial node (SAN) and rapidly propagate through the atria to the AV node via preferential conduction pathways, including one associated with the coronary sinus. However, few distinguishing features of these tracts are known. Identifying specific molecular markers to distinguish among these conduction pathways will have important implications for understanding atrial conduction and atrial arrhythmogenesis. Using a Stim1 reporter mouse, we discovered stromal interaction molecule 1 (STIM1)-expressing coronary sinus cardiomyocytes (CSC)s in a tract from the SAN to the coronary sinus. Our studies here establish that STIM1 is a molecular marker of CSCs and we propose a role for STIM1-CSCs in interatrial conduction. Deletion of Stim1 from the CSCs slowed interatrial conduction and increased susceptibility to atrial arrhythmias. Store-operated Ca2+ currents (Isoc) in response to Ca2+ store depletion were markedly reduced in CSCs and their action potentials showed electrical remodeling. Our studies identify STIM1 as a molecular marker for a coronary sinus interatrial conduction pathway. We propose a role for SOCE in Ca2+ signaling of CSCs and implicate STIM1 in atrial arrhythmogenesis.Item Open Access TWEAK/Fn14 signaling is required for liver regeneration after partial hepatectomy in mice.(PLoS One, 2014) Karaca, Gamze; Swiderska-Syn, Marzena; Xie, Guanhua; Syn, Wing-Kin; Krüger, Leandi; Machado, Mariana Verdelho; Garman, Katherine; Choi, Steve S; Michelotti, Gregory A; Burkly, Linda C; Ochoa, Begoña; Diehl, Anna MaeBACKGROUND & AIMS: Pro-inflammatory cytokines are important for liver regeneration after partial hepatectomy (PH). Expression of Fibroblast growth factor-inducible 14 (Fn14), the receptor for TNF-like weak inducer of apoptosis (TWEAK), is induced rapidly after PH and remains elevated throughout the period of peak hepatocyte replication. The role of Fn14 in post-PH liver regeneration is uncertain because Fn14 is expressed by liver progenitors and TWEAK-Fn14 interactions stimulate progenitor growth, but replication of mature hepatocytes is thought to drive liver regeneration after PH. METHODS: To clarify the role of TWEAK-Fn14 after PH, we compared post-PH regenerative responses in wild type (WT) mice, Fn14 knockout (KO) mice, TWEAK KO mice, and WT mice treated with anti-TWEAK antibodies. RESULTS: In WT mice, rare Fn14(+) cells localized with other progenitor markers in peri-portal areas before PH. PH rapidly increased proliferation of Fn14(+) cells; hepatocytic cells that expressed Fn14 and other progenitor markers, such as Lgr5, progressively accumulated from 12-8 h post-PH and then declined to baseline by 96 h. When TWEAK/Fn14 signaling was disrupted, progenitor accumulation, induction of pro-regenerative cytokines, hepatocyte and cholangiocyte proliferation, and over-all survival were inhibited, while post-PH liver damage and bilirubin levels were increased. TWEAK stimulated proliferation and increased Lgr5 expression in cultured liver progenitors, but had no effect on either parameter in cultured primary hepatocytes. CONCLUSIONS: TWEAK-FN14 signaling is necessary for the healthy adult liver to regenerate normally after acute partial hepatectomy.Item Open Access Unprecedented loss of ammonia assimilation capability in a urease-encoding bacterial mutualist.(BMC Genomics, 2010-12-02) Williams, Laura E; Wernegreen, Jennifer JBACKGROUND: Blochmannia are obligately intracellular bacterial mutualists of ants of the tribe Camponotini. Blochmannia perform key nutritional functions for the host, including synthesis of several essential amino acids. We used Illumina technology to sequence the genome of Blochmannia associated with Camponotus vafer. RESULTS: Although Blochmannia vafer retains many nutritional functions, it is missing glutamine synthetase (glnA), a component of the nitrogen recycling pathway encoded by the previously sequenced B. floridanus and B. pennsylvanicus. With the exception of Ureaplasma, B. vafer is the only sequenced bacterium to date that encodes urease but lacks the ability to assimilate ammonia into glutamine or glutamate. Loss of glnA occurred in a deletion hotspot near the putative replication origin. Overall, compared to the likely gene set of their common ancestor, 31 genes are missing or eroded in B. vafer, compared to 28 in B. floridanus and four in B. pennsylvanicus. Three genes (queA, visC and yggS) show convergent loss or erosion, suggesting relaxed selection for their functions. Eight B. vafer genes contain frameshifts in homopolymeric tracts that may be corrected by transcriptional slippage. Two of these encode DNA replication proteins: dnaX, which we infer is also frameshifted in B. floridanus, and dnaG. CONCLUSIONS: Comparing the B. vafer genome with B. pennsylvanicus and B. floridanus refines the core genes shared within the mutualist group, thereby clarifying functions required across ant host species. This third genome also allows us to track gene loss and erosion in a phylogenetic context to more fully understand processes of genome reduction.