Browsing by Subject "Gene Expression Regulation, Viral"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Distinctive variation in the U3R region of the 5' Long Terminal Repeat from diverse HIV-1 strains.(PloS one, 2018-01) Mbondji-Wonje, Christelle; Dong, Ming; Wang, Xue; Zhao, Jiangqin; Ragupathy, Viswanath; Sanchez, Ana M; Denny, Thomas N; Hewlett, IndiraFunctional mapping of the 5'LTR has shown that the U3 and the R regions (U3R) contain a cluster of regulatory elements involved in the control of HIV-1 transcription and expression. As the HIV-1 genome is characterized by extensive variability, here we aimed to describe mutations in the U3R from various HIV-1 clades and CRFs in order to highlight strain specific differences that may impact the biological properties of diverse HIV-1 strains. To achieve our purpose, the U3R sequence of plasma derived virus belonging to different clades (A1, B, C, D, F2) and recombinants (CRF02_AG, CRF01_AE and CRF22_01A1) was obtained using Illumina technology. Overall, the R region was very well conserved among and across different strains, while in the U3 region the average inter-strains nucleotide dissimilarity was up to 25%. The TAR hairpin displayed a strain-distinctive cluster of mutations affecting the bulge and the loop, but mostly the stem. Like in previous studies we found a TATAA motif in U3 promoter region from the majority of HIV-1 strains and a TAAAA motif in CRF01_AE; but also in LTRs from CRF22_01A1 isolates. Although LTRs from CRF22_01A1 specimens were assigned CRF01_AE, they contained two NF-kB sites instead of the single TFBS described in CRF01_AE. Also, as previously describe in clade C isolates, we found no C/EBP binding site directly upstream of the enhancer region in CRF22_01A1 specimens. In our study, one-third of CRF02_AG LTRs displayed three NF-kB sites which have been mainly described in clade C isolates. Overall, the number, location and binding patterns of potential regulatory elements found along the U3R might be specific to some HIV-1 strains such as clade F2, CRF02_AG, CRF01_AE and CRF22_01A1. These features may be worth consideration as they may be involved in distinctive regulation of HIV-1 transcription and replication by different and diverse infecting strains.Item Open Access Epstein-Barr virus induces global changes in cellular mRNA isoform usage that are important for the maintenance of latency.(Journal of virology, 2013-11) Homa, Nicholas J; Salinas, Raul; Forte, Eleonora; Robinson, Timothy J; Garcia-Blanco, Mariano A; Luftig, Micah AOncogenic viruses promote cell proliferation through the dramatic reorganization of host transcriptomes. In addition to regulating mRNA abundance, changes in mRNA isoform usage can have a profound impact on the protein output of the transcriptome. Using Epstein-Barr virus (EBV) transformation of primary B cells, we have studied the ability of an oncogenic virus to alter the mRNA isoform profile of its host. Using the algorithm called SplicerEX with two complementary Affymetrix microarray platforms, we uncovered 433 mRNA isoform changes regulated by EBV during B-cell transformation. These changes were largely orthogonal with the 2,163 mRNA abundance changes observed during transformation, such that less than one-third of mRNAs changing at the level of isoform also changed in overall abundance. While we observed no preference for a mechanistic class of mRNA isoform change, we detected a significant shortening of 3' untranslated regions and exclusion of cassette exons in EBV-transformed cells relative to uninfected B cells. Gene ontology analysis of the mRNA isoform changes revealed significant enrichment in nucleic acid binding proteins. We validated several of these isoform changes and were intrigued by those in two mRNAs encoding the proteins XBP1 and TCF4, which have both been shown to bind and activate the promoter of the major EBV lytic trans-activator BZLF1. Our studies indicate that EBV latent infection promotes the usage of mRNA isoforms of XBP1 and TCF4 that restrict BZLF1 activation. Therefore, characterization of global changes in mRNA isoform usage during EBV infection identifies a new mechanism for the maintenance of latent infection.Item Open Access Infection of monkeys by simian-human immunodeficiency viruses with transmitted/founder clade C HIV-1 envelopes.(Virology, 2015-01-15) Asmal, Mohammed; Luedemann, Corinne; Lavine, Christy L; Mach, Linh V; Balachandran, Harikrishnan; Brinkley, Christie; Denny, Thomas N; Lewis, Mark G; Anderson, Hanne; Pal, Ranajit; Sok, Devin; Le, Khoa; Pauthner, Matthias; Hahn, Beatrice H; Shaw, George M; Seaman, Michael S; Letvin, Norman L; Burton, Dennis R; Sodroski, Joseph G; Haynes, Barton F; Santra, SampaSimian-human immunodeficiency viruses (SHIVs) that mirror natural transmitted/founder (T/F) viruses in man are needed for evaluation of HIV-1 vaccine candidates in nonhuman primates. Currently available SHIVs contain HIV-1 env genes from chronically-infected individuals and do not reflect the characteristics of biologically relevant HIV-1 strains that mediate human transmission. We chose to develop clade C SHIVs, as clade C is the major infecting subtype of HIV-1 in the world. We constructed 10 clade C SHIVs expressing Env proteins from T/F viruses. Three of these ten clade C SHIVs (SHIV KB9 C3, SHIV KB9 C4 and SHIV KB9 C5) replicated in naïve rhesus monkeys. These three SHIVs are mucosally transmissible and are neutralized by sCD4 and several HIV-1 broadly neutralizing antibodies. However, like natural T/F viruses, they exhibit low Env reactivity and a Tier 2 neutralization sensitivity. Of note, none of the clade C T/F SHIVs elicited detectable autologous neutralizing antibodies in the infected monkeys, even though antibodies that neutralized a heterologous Tier 1 HIV-1 were generated. Challenge with these three new clade C SHIVs will provide biologically relevant tests for vaccine protection in rhesus macaques.