Browsing by Subject "Gene Knock-In Techniques"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Activation of the ATF6 (Activating Transcription Factor 6) Signaling Pathway in Neurons Improves Outcome After Cardiac Arrest in Mice.(Journal of the American Heart Association, 2021-06-11) Shen, Yuntian; Li, Ran; Yu, Shu; Zhao, Qiang; Wang, Zhuoran; Sheng, Huaxin; Yang, WeiBackground Ischemia/reperfusion injury impairs proteostasis, and triggers adaptive cellular responses, such as the unfolded protein response (UPR), which functions to restore endoplasmic reticulum homeostasis. After cardiac arrest (CA) and resuscitation, the UPR is activated in various organs including the brain. However, the role of the UPR in CA has remained largely unknown. Here we aimed to investigate effects of activation of the ATF6 (activating transcription factor 6) UPR branch in CA. Methods and Results Conditional and inducible sATF6-KI (short-form ATF6 knock-in) mice and a selective ATF6 pathway activator 147 were used. CA was induced in mice by KCl injection, followed by cardiopulmonary resuscitation. We first found that neurologic function was significantly improved, and neuronal damage was mitigated after the ATF6 pathway was activated in neurons of sATF6-KI mice subjected to CA/cardiopulmonary resuscitation. Further RNA sequencing analysis indicated that such beneficial effects were likely attributable to increased expression of pro-proteostatic genes regulated by ATF6. Especially, key components of the endoplasmic reticulum-associated degradation process, which clears potentially toxic unfolded/misfolded proteins in the endoplasmic reticulum, were upregulated in the sATF6-KI brain. Accordingly, the CA-induced increase in K48-linked polyubiquitin in the brain was higher in sATF6-KI mice relative to control mice. Finally, CA outcome, including the survival rate, was significantly improved in mice treated with compound 147. Conclusions This is the first experimental study to determine the role of the ATF6 UPR branch in CA outcome. Our data indicate that the ATF6 UPR branch is a prosurvival pathway and may be considered as a therapeutic target for CA.Item Open Access Activation of the ATF6 branch of the unfolded protein response in neurons improves stroke outcome.(Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, 2017-03) Yu, Zhui; Sheng, Huaxin; Liu, Shuai; Zhao, Shengli; Glembotski, Christopher C; Warner, David S; Paschen, Wulf; Yang, WeiImpaired function of the endoplasmic reticulum (ER stress) is a hallmark of many human diseases including stroke. To restore ER function in stressed cells, the unfolded protein response (UPR) is induced, which activates 3 ER stress sensor proteins including activating transcription factor 6 (ATF6). ATF6 is then cleaved by proteases to form the short-form ATF6 (sATF6), a transcription factor. To determine the extent to which activation of the ATF6 UPR branch defines the fate and function of neurons after stroke, we generated a conditional and tamoxifen-inducible sATF6 knock-in mouse. To express sATF6 in forebrain neurons, we crossed our sATF6 knock-in mouse line with Emx1-Cre mice to generate ATF6-KI mice. After the ATF6 branch was activated in ATF6-KI mice with tamoxifen, mice were subjected to transient middle cerebral artery occlusion. Forced activation of the ATF6 UPR branch reduced infarct volume and improved functional outcome at 24 h after stroke. Increased autophagic activity at early reperfusion time after stroke may contribute to the ATF6-mediated neuroprotection. We concluded that the ATF6 UPR branch is crucial to ischemic stroke outcome. Therefore, boosting UPR pro-survival pathways may be a promising therapeutic strategy for stroke.Item Open Access An Evolutionary Insertion in the Mxra8 Receptor-Binding Site Confers Resistance to Alphavirus Infection and Pathogenesis.(Cell host & microbe, 2020-03) Kim, Arthur S; Zimmerman, Ofer; Fox, Julie M; Nelson, Christopher A; Basore, Katherine; Zhang, Rong; Durnell, Lorellin; Desai, Chandni; Bullock, Christopher; Deem, Sharon L; Oppenheimer, Jonas; Shapiro, Beth; Wang, Ting; Cherry, Sara; Coyne, Carolyn B; Handley, Scott A; Landis, Michael J; Fremont, Daved H; Diamond, Michael SAlphaviruses are emerging, mosquito-transmitted RNA viruses with poorly understood cellular tropism and species selectivity. Mxra8 is a receptor for multiple alphaviruses including chikungunya virus (CHIKV). We discovered that while expression of mouse, rat, chimpanzee, dog, horse, goat, sheep, and human Mxra8 enables alphavirus infection in cell culture, cattle Mxra8 does not. Cattle Mxra8 encodes a 15-amino acid insertion in its ectodomain that prevents Mxra8 binding to CHIKV. Identical insertions are present in zebu, yak, and the extinct auroch. As other Bovinae lineages contain related Mxra8 sequences, this insertion likely occurred at least 5 million years ago. Removing the Mxra8 insertion in Bovinae enhances alphavirus binding and infection, while introducing the insertion into mouse Mxra8 blocks CHIKV binding, prevents infection by multiple alphaviruses in cells, and mitigates CHIKV-induced pathogenesis in mice. Our studies on how this insertion provides resistance to CHIKV infection could facilitate countermeasures that disrupt Mxra8 interactions with alphaviruses.Item Open Access Targeting phosphorylation of eukaryotic initiation factor-2α to treat human disease.(Progress in molecular biology and translational science, 2012-01) Fullwood, Melissa J; Zhou, Wei; Shenolikar, ShirishThe unfolded protein response, also known as endoplasmic reticulum (ER) stress, has been implicated in numerous human diseases, including atherosclerosis, cancer, diabetes, and neurodegenerative disorders. Protein misfolding activates one or more of the three ER transmembrane sensors to initiate a complex network of signaling that transiently suppresses protein translation while also enhancing protein folding and proteasomal degradation of misfolded proteins to ensure full recovery from ER stress. Gene disruption studies in mice have provided critical insights into the role of specific signaling components and pathways in the differing responses of animal tissues to ER stress. These studies have emphasized an important contribution of translational repression to sustained insulin synthesis and β-cell viability in experimental models of type-2 diabetes. This has focused attention on the recently discovered small-molecule inhibitors of eIF2α phosphatases that prolong eIF2α phosphorylation to reduce cell death in several animal models of human disease. These compounds show significant cytoprotection in cellular and animal models of neurodegenerative disorders, highlighting a potential strategy for future development of drugs to treat human protein misfolding disorders.