Browsing by Subject "Gene Targeting"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access A genetic memory initiates the epigenetic loop necessary to preserve centromere position.(The EMBO journal, 2020-10) Hoffmann, Sebastian; Izquierdo, Helena M; Gamba, Riccardo; Chardon, Florian; Dumont, Marie; Keizer, Veer; Hervé, Solène; McNulty, Shannon M; Sullivan, Beth A; Manel, Nicolas; Fachinetti, DanieleCentromeres are built on repetitive DNA sequences (CenDNA) and a specific chromatin enriched with the histone H3 variant CENP-A, the epigenetic mark that identifies centromere position. Here, we interrogate the importance of CenDNA in centromere specification by developing a system to rapidly remove and reactivate CENP-A (CENP-AOFF/ON ). Using this system, we define the temporal cascade of events necessary to maintain centromere position. We unveil that CENP-B bound to CenDNA provides memory for maintenance on human centromeres by promoting de novo CENP-A deposition. Indeed, lack of CENP-B favors neocentromere formation under selective pressure. Occasionally, CENP-B triggers centromere re-activation initiated by CENP-C, but not CENP-A, recruitment at both ectopic and native centromeres. This is then sufficient to initiate the CENP-A-based epigenetic loop. Finally, we identify a population of CENP-A-negative, CENP-B/C-positive resting CD4+ T cells capable to re-express and reassembles CENP-A upon cell cycle entry, demonstrating the physiological importance of the genetic memory.Item Open Access Examination of Endogenous Rotund Expression and Function in Developing Drosophila Olfactory System Using CRISPR-Cas9-Mediated Protein Tagging.(G3 (Bethesda), 2015-10-23) Li, Qingyun; Barish, Scott; Okuwa, Sumie; Volkan, Pelin CThe zinc-finger protein Rotund (Rn) plays a critical role in controlling the development of the fly olfactory system. However, little is known about its molecular function in vivo. Here, we added protein tags to the rn locus using CRISPR-Cas9 technology in Drosophila to investigate its subcellular localization and the genes that it regulates . We previously used a reporter construct to show that rn is expressed in a subset of olfactory receptor neuron (ORN) precursors and it is required for the diversification of ORN fates. Here, we show that tagged endogenous Rn protein is functional based on the analysis of ORN phenotypes. Using this method, we also mapped the expression pattern of the endogenous isoform-specific tags in vivo with increased precision. Comparison of the Rn expression pattern from this study with previously published results using GAL4 reporters showed that Rn is mainly present in early steps in antennal disc patterning, but not in pupal stages when ORNs are born. Finally, using chromatin immunoprecipitation, we showed a direct binding of Rotund to a previously identified regulatory element upstream of the bric-a-brac gene locus in the developing antennal disc.Item Open Access Expression of a beta-adrenergic receptor kinase 1 inhibitor prevents the development of myocardial failure in gene-targeted mice.(Proc Natl Acad Sci U S A, 1998-06-09) Rockman, HA; Chien, KR; Choi, DJ; Iaccarino, G; Hunter, JJ; Ross, J; Lefkowitz, RJ; Koch, WJHeart failure is accompanied by severely impaired beta-adrenergic receptor (betaAR) function, which includes loss of betaAR density and functional uncoupling of remaining receptors. An important mechanism for the rapid desensitization of betaAR function is agonist-stimulated receptor phosphorylation by the betaAR kinase (betaARK1), an enzyme known to be elevated in failing human heart tissue. To investigate whether alterations in betaAR function contribute to the development of myocardial failure, transgenic mice with cardiac-restricted overexpression of either a peptide inhibitor of betaARK1 or the beta2AR were mated into a genetic model of murine heart failure (MLP-/-). In vivo cardiac function was assessed by echocardiography and cardiac catheterization. Both MLP-/- and MLP-/-/beta2AR mice had enlarged left ventricular (LV) chambers with significantly reduced fractional shortening and mean velocity of circumferential fiber shortening. In contrast, MLP-/-/betaARKct mice had normal LV chamber size and function. Basal LV contractility in the MLP-/-/betaARKct mice, as measured by LV dP/dtmax, was increased significantly compared with the MLP-/- mice but less than controls. Importantly, heightened betaAR desensitization in the MLP-/- mice, measured in vivo (responsiveness to isoproterenol) and in vitro (isoproterenol-stimulated membrane adenylyl cyclase activity), was completely reversed with overexpression of the betaARK1 inhibitor. We report here the striking finding that overexpression of this inhibitor prevents the development of cardiomyopathy in this murine model of heart failure. These findings implicate abnormal betaAR-G protein coupling in the pathogenesis of the failing heart and point the way toward development of agents to inhibit betaARK1 as a novel mode of therapy.