Browsing by Subject "Genetic Markers"
Now showing 1 - 13 of 13
- Results Per Page
- Sort Options
Item Open Access Accelerated epigenetic age as a biomarker of cardiovascular sensitivity to traffic-related air pollution.(Aging, 2020-12) Ward-Caviness, Cavin K; Russell, Armistead G; Weaver, Anne M; Slawsky, Erik; Dhingra, Radhika; Kwee, Lydia Coulter; Jiang, Rong; Neas, Lucas M; Diaz-Sanchez, David; Devlin, Robert B; Cascio, Wayne E; Olden, Kenneth; Hauser, Elizabeth R; Shah, Svati H; Kraus, William EBackground
Accelerated epigenetic age has been proposed as a biomarker of increased aging, which may indicate disruptions in cellular and organ system homeostasis and thus contribute to sensitivity to environmental exposures.Methods
Using 497 participants from the CATHGEN cohort, we evaluated whether accelerated epigenetic aging increases cardiovascular sensitivity to traffic-related air pollution (TRAP) exposure. We used residential proximity to major roadways and source apportioned air pollution models as measures of TRAP exposure, and chose peripheral arterial disease (PAD) and blood pressure as outcomes based on previous associations with TRAP. We used Horvath epigenetic age acceleration (AAD) and phenotypic age acceleration (PhenoAAD) as measures of age acceleration, and adjusted all models for chronological age, race, sex, smoking, and socioeconomic status.Results
We observed significant interactions between TRAP and both AAD and PhenoAAD. Interactions indicated that increased epigenetic age acceleration elevated associations between proximity to roadways and PAD. Interactions were also observed between AAD and gasoline and diesel source apportioned PM2.5.Conclusion
Epigenetic age acceleration may be a biomarker of sensitivity to air pollution, particularly for TRAP in urban cohorts. This presents a novel means by which to understand sensitivity to air pollution and provides a molecular measure of environmental sensitivity.Item Open Access Application of a rank-based genetic association test to age-at-onset data from the Collaborative Study on the Genetics of Alcoholism study.(BMC Genet, 2005-12-30) Li, YJ; Martin, ER; Zhang, L; Allen, ASAssociation studies of quantitative traits have often relied on methods in which a normal distribution of the trait is assumed. However, quantitative phenotypes from complex human diseases are often censored, highly skewed, or contaminated with outlying values. We recently developed a rank-based association method that takes into account censoring and makes no distributional assumptions about the trait. In this study, we applied our new method to age-at-onset data on ALDX1 and ALDX2. Both traits are highly skewed (skewness > 1.9) and often censored. We performed a whole genome association study of age at onset of the ALDX1 trait using Illumina single-nucleotide polymorphisms. Only slightly more than 5% of markers were significant. However, we identified two regions on chromosomes 14 and 15, which each have at least four significant markers clustering together. These two regions may harbor genes that regulate age at onset of ALDX1 and ALDX2. Future fine mapping of these two regions with densely spaced markers is warranted.Item Open Access Characterization of the standard and recommended CODIS markers.(Journal of forensic sciences, 2013-01) Katsanis, Sara H; Wagner, Jennifer KAs U.S. courts grapple with constitutional challenges to DNA identification applications, judges are resting legal decisions on the fingerprint analogy, questioning whether the information from a DNA profile could, in light of scientific advances, reveal biomedically relevant information. While CODIS loci were selected largely because they lack phenotypic associations, how this criterion was assessed is unclear. To clarify their phenotypic relevance, we describe the standard and recommended CODIS markers within the context of what is known currently about the genome. We characterize the genomic regions and phenotypic associations of the 24 standard and suggested CODIS markers. None of the markers are within exons, although 12 are intragenic. No CODIS genotypes are associated with known phenotypes. This study provides clarification of the genomic significance of the key identification markers and supports--independent of the forensic scientific community--that the CODIS profiles provide identification but not sensitive or biomedically relevant information.Item Open Access Cigarette smoke modulates vascular smooth muscle phenotype: implications for carotid and cerebrovascular disease.(PloS one, 2013-01) Starke, Robert M; Ali, Muhammad S; Jabbour, Pascal M; Tjoumakaris, Stavropoula I; Gonzalez, Fernando; Hasan, David M; Rosenwasser, Robert H; Owens, Gary K; Koch, Walter J; Dumont, Aaron SBackground
The role of smooth muscle cell (SMC) phenotypic modulation in the cerebral circulation and pathogenesis of stroke has not been determined. Cigarette smoke is a major risk factor for atherosclerosis, but potential mechanisms are unclear, and its role in SMC phenotypic modulation has not been established.Methods and results
In cultured cerebral vascular SMCs, exposure to cigarette smoke extract (CSE) resulted in decreased promoter activity and mRNA expression of key SMC contractile genes (SM-α-actin, SM-22α, SM-MHC) and the transcription factor myocardin in a dose-dependent manner. CSE also induced pro-inflammatory/matrix remodeling genes (MCP-1, MMPs, TNF-α, IL-1β, NF-κB). CSE increased expression of KLF4, a known regulator of SMC differentiation, and siKLF4 inhibited CSE induced suppression of SMC contractile genes and myocardin and activation of inflammatory genes. These mechanisms were confirmed in vivo following exposure of rat carotid arteries to CSE. Chromatin immune-precipitation assays in vivo and in vitro demonstrated that CSE promotes epigenetic changes with binding of KLF4 to the promoter regions of myocardin and SMC marker genes and alterations in promoter acetylation and methylation.Conclusion
CSE exposure results in phenotypic modulation of cerebral SMC through myocardin and KLF4 dependent mechanisms. These results provides a mechanism by which cigarette smoke induces a pro-inflammatory/matrix remodeling phenotype in SMC and an important pathway for cigarette smoke to contribute to atherosclerosis and stroke.Item Open Access Genome-wide association study of acute kidney injury after coronary bypass graft surgery identifies susceptibility loci.(Kidney Int, 2015-10) Stafford-Smith, Mark; Li, Yi-Ju; Mathew, Joseph P; Li, Yen-Wei; Ji, Yunqi; Phillips-Bute, Barbara G; Milano, Carmelo A; Newman, Mark F; Kraus, William E; Kertai, Miklos D; Shah, Svati H; Podgoreanu, Mihai V; Duke Perioperative Genetics and Safety Outcomes (PEGASUS) Investigative TeamAcute kidney injury (AKI) is a common, serious complication of cardiac surgery. Since prior studies have supported a genetic basis for postoperative AKI, we conducted a genome-wide association study (GWAS) for AKI following coronary bypass graft (CABG) surgery. The discovery data set consisted of 873 nonemergent CABG surgery patients with cardiopulmonary bypass (PEGASUS), while a replication data set had 380 cardiac surgical patients (CATHGEN). Single-nucleotide polymorphism (SNP) data were based on Illumina Human610-Quad (PEGASUS) and OMNI1-Quad (CATHGEN) BeadChips. We used linear regression with adjustment for a clinical AKI risk score to test SNP associations with the postoperative peak rise relative to preoperative serum creatinine concentration as a quantitative AKI trait. Nine SNPs meeting significance in the discovery set were detected. The rs13317787 in GRM7|LMCD1-AS1 intergenic region (3p21.6) and rs10262995 in BBS9 (7p14.3) were replicated with significance in the CATHGEN data set and exhibited significantly strong overall association following meta-analysis. Additional fine mapping using imputed SNPs across these two regions and meta-analysis found genome-wide significance at the GRM7|LMCD1-AS1 locus and a significantly strong association at BBS9. Thus, through an unbiased GWAS approach, we found two new loci associated with post-CABG AKI providing new insights into the pathogenesis of perioperative AKI.Item Open Access Genomic resources for the endangered Hawaiian honeycreepers.(BMC Genomics, 2014-12-12) Callicrate, Taylor; Dikow, Rebecca; Thomas, James W; Mullikin, James C; Jarvis, Erich D; Fleischer, Robert C; NISC Comparative Sequencing ProgramBACKGROUND: The Hawaiian honeycreepers are an avian adaptive radiation containing many endangered and extinct species. They display a dramatic range of phenotypic variation and are a model system for studies of evolution, conservation, disease dynamics and population genetics. Development of a genome-scale resources for this group would augment the quality of research focusing on Hawaiian honeycreepers and facilitate comparative avian genomic research. RESULTS: We assembled the genome sequence of a Hawaii amakihi (Hemignathus virens),and identified ~3.9 million single nucleotide polymorphisms (SNPs) in the genome. Using the amakihi genome as a reference, we also identified ~156,000 SNPs in RAD tag (restriction site associated DNA) sequencing of five honeycreeper species (palila [Loxioides bailleui], Nihoa finch [Telespiza ultima], iiwi [Vestiaria coccinea], apapane [Himatione sanguinea], and amakihi). SNPs are distributed throughout the amakihi genome, and the individual sequenced shows several large regions of low heterozygosity on chromosomes 1, 5, 6, 8 and 11. SNPs from RAD tag sequencing were also found throughout the genome but were found to be more densely located on microchromosomes, apparently a result of differential distribution of the particular site recognized by restriction enzyme BseXI. CONCLUSIONS: The amakihi genome sequence will be useful for comparative avian genomics research and provides a significant resource for studies in such areas as disease ecology, evolution, and conservation genetics. The genome sequences will enable mapping of transcriptome data for honeycreepers and comparison of gene sequences between avian taxa. Researchers will be able to use the large number of SNP markers to genotype honeycreepers in regions of interest or across the whole genome. There are enough markers to enable use of methods such as genome-wide association studies (GWAS) that will allow researchers to make connections between phenotypic diversity of honeycreepers and specific genetic variants. Genome-wide markers will also help resolve phylogenetic and population genetic questions in honeycreepers.Item Open Access How the effects of aging and stresses of life are integrated in mortality rates: insights for genetic studies of human health and longevity.(Biogerontology, 2016-02) Yashin, Anatoliy I; Arbeev, Konstantin G; Arbeeva, Liubov S; Wu, Deqing; Akushevich, Igor; Kovtun, Mikhail; Yashkin, Arseniy; Kulminski, Alexander; Culminskaya, Irina; Stallard, Eric; Li, Miaozhu; Ukraintseva, Svetlana VIncreasing proportions of elderly individuals in developed countries combined with substantial increases in related medical expenditures make the improvement of the health of the elderly a high priority today. If the process of aging by individuals is a major cause of age related health declines then postponing aging could be an efficient strategy for improving the health of the elderly. Implementing this strategy requires a better understanding of genetic and non-genetic connections among aging, health, and longevity. We review progress and problems in research areas whose development may contribute to analyses of such connections. These include genetic studies of human aging and longevity, the heterogeneity of populations with respect to their susceptibility to disease and death, forces that shape age patterns of human mortality, secular trends in mortality decline, and integrative mortality modeling using longitudinal data. The dynamic involvement of genetic factors in (i) morbidity/mortality risks, (ii) responses to stresses of life, (iii) multi-morbidities of many elderly individuals, (iv) trade-offs for diseases, (v) genetic heterogeneity, and (vi) other relevant aging-related health declines, underscores the need for a comprehensive, integrated approach to analyze the genetic connections for all of the above aspects of aging-related changes. The dynamic relationships among aging, health, and longevity traits would be better understood if one linked several research fields within one conceptual framework that allowed for efficient analyses of available longitudinal data using the wealth of available knowledge about aging, health, and longevity already accumulated in the research field.Item Open Access Interpreting Incidentally Identified Variants in Genes Associated With Catecholaminergic Polymorphic Ventricular Tachycardia in a Large Cohort of Clinical Whole-Exome Genetic Test Referrals.(Circulation. Arrhythmia and electrophysiology, 2017-04) Landstrom, AP; Dailey-Schwartz, AL; Rosenfeld, JA; Yang, Y; McLean, MJ; Miyake, CY; Valdes, SO; Fan, Y; Allen, HD; Penny, DJ; Kim, JJBACKGROUND:The rapid expansion of genetic testing has led to increased utilization of clinical whole-exome sequencing (WES). Clinicians and genetic researchers are being faced with assessing risk of disease vulnerability from incidentally identified genetic variants which is typified by variants found in genes associated with sudden death-predisposing catecholaminergic polymorphic ventricular tachycardia (CPVT). We sought to determine whether incidentally identified variants in genes associated with CPVT from WES clinical testing represent disease-associated biomarkers. METHODS AND RESULTS:CPVT-associated genes RYR2 and CASQ2 variants were identified in one of the world's largest collections of clinical WES referral tests (N=6517, Baylor Miraca Genetics Laboratories) and compared with a control cohort of ostensibly healthy individuals (N=60 706) and a case cohort of CPVT cases (N=155). Within the WES cohort, the rate of rare variants in CPVT-associated genes was 8.8% compared with 6.0% among controls and 60.0% among cases. There was a predominance of variants of undetermined significance (97.7%). After protein topology mapping, WES variants colocalized more frequently to residues with variants found in controls compared with cases. Retrospective clinical evaluation of individuals referred to our institution with WES-positive variants demonstrated no evidence of clinical CPVT in individuals with a low pretest clinical suspicion for CPVT. CONCLUSIONS:The prevalence of incidentally identified CPVT-associated variants is ≈9% among WES tests. Variants of undetermined significances in CPVT-associated genes in WES genetic testing, in the absence of clinical suspicion for CPVT, are unlikely to represent markers of CPVT pathogenicity.Item Open Access Low-copy nuclear sequence data confirm complex patterns of farina evolution in notholaenid ferns (Pteridaceae).(Molecular phylogenetics and evolution, 2019-09) Kao, T; Pryer, KM; Freund, FD; Windham, MD; Rothfels, CJNotholaenids are an unusual group of ferns that have adapted to, and diversified within, the deserts of Mexico and the southwestern United States. With approximately 40 species, this group is noted for being desiccation-tolerant and having "farina"-powdery exudates of lipophilic flavonoid aglycones-that occur on both the gametophytic and sporophytic phases of their life cycle. The most recent circumscription of notholaenids based on plastid markers surprisingly suggests that several morphological characters, including the expression of farina, are homoplasious. In a striking case of convergence, Notholaena standleyi appears to be distantly related to core Notholaena, with several taxa not before associated with Notholaena nested between them. Such conflicts can be due to morphological homoplasy resulting from adaptive convergence or, alternatively, the plastid phylogeny itself might be misleading, diverging from the true species tree due to incomplete lineage sorting, hybridization, or other factors. In this study, we present a species phylogeny for notholaenid ferns, using four low-copy nuclear loci and concatenated data from three plastid loci. A total of 61 individuals (49 notholaenids and 12 outgroup taxa) were sampled, including 31 out of 37 recognized notholaenid species. The homeologous/allelic nuclear sequences were retrieved using PacBio sequencing and the PURC bioinformatics pipeline. Each dataset was first analyzed individually using maximum likelihood and Bayesian inference, and the species phylogeny was inferred using *BEAST. Although we observed several incongruences between the nuclear and plastid phylogenies, our principal results are broadly congruent with previous inferences based on plastid data. By mapping the presence of farina and their biochemical constitutions on our consensus phylogenetic tree, we confirmed that the characters are indeed homoplastic and have complex evolutionary histories. Hybridization among recognized species of the notholaenid clade appears to be relatively rare compared to that observed in other well-studied fern genera.Item Open Access PenPC: A two-step approach to estimate the skeletons of high-dimensional directed acyclic graphs.(Biometrics, 2016-03) Ha, Min Jin; Sun, Wei; Xie, JichunEstimation of the skeleton of a directed acyclic graph (DAG) is of great importance for understanding the underlying DAG and causal effects can be assessed from the skeleton when the DAG is not identifiable. We propose a novel method named PenPC to estimate the skeleton of a high-dimensional DAG by a two-step approach. We first estimate the nonzero entries of a concentration matrix using penalized regression, and then fix the difference between the concentration matrix and the skeleton by evaluating a set of conditional independence hypotheses. For high-dimensional problems where the number of vertices p is in polynomial or exponential scale of sample size n, we study the asymptotic property of PenPC on two types of graphs: traditional random graphs where all the vertices have the same expected number of neighbors, and scale-free graphs where a few vertices may have a large number of neighbors. As illustrated by extensive simulations and applications on gene expression data of cancer patients, PenPC has higher sensitivity and specificity than the state-of-the-art method, the PC-stable algorithm.Item Open Access Pharmacogenomics-Driven Prediction of Antidepressant Treatment Outcomes: A Machine-Learning Approach With Multi-trial Replication.(Clinical pharmacology and therapeutics, 2019-10) Athreya, Arjun P; Neavin, Drew; Carrillo-Roa, Tania; Skime, Michelle; Biernacka, Joanna; Frye, Mark A; Rush, A John; Wang, Liewei; Binder, Elisabeth B; Iyer, Ravishankar K; Weinshilboum, Richard M; Bobo, William VWe set out to determine whether machine learning-based algorithms that included functionally validated pharmacogenomic biomarkers joined with clinical measures could predict selective serotonin reuptake inhibitor (SSRI) remission/response in patients with major depressive disorder (MDD). We studied 1,030 white outpatients with MDD treated with citalopram/escitalopram in the Mayo Clinic Pharmacogenomics Research Network Antidepressant Medication Pharmacogenomic Study (PGRN-AMPS; n = 398), Sequenced Treatment Alternatives to Relieve Depression (STAR*D; n = 467), and International SSRI Pharmacogenomics Consortium (ISPC; n = 165) trials. A genomewide association study for PGRN-AMPS plasma metabolites associated with SSRI response (serotonin) and baseline MDD severity (kynurenine) identified single nucleotide polymorphisms (SNPs) in DEFB1, ERICH3, AHR, and TSPAN5 that we tested as predictors. Supervised machine-learning methods trained using SNPs and total baseline depression scores predicted remission and response at 8 weeks with area under the receiver operating curve (AUC) > 0.7 (P < 0.04) in PGRN-AMPS patients, with comparable prediction accuracies > 69% (P ≤ 0.07) in STAR*D and ISPC. These results demonstrate that machine learning can achieve accurate and, importantly, replicable prediction of SSRI therapy response using total baseline depression severity combined with pharmacogenomic biomarkers.Item Open Access Radiographic severity of knee osteoarthritis is conditional on interleukin 1 receptor antagonist gene variations.(Ann Rheum Dis, 2010-05) Attur, M; Wang, HY; Kraus, VB; Bukowski, JF; Aziz, N; Krasnokutsky, S; Samuels, J; Greenberg, J; McDaniel, G; Abramson, SB; Kornman, KSBACKGROUND: A lack of biomarkers that identify patients at risk for severe osteoarthritis (OA) complicates development of disease-modifying OA drugs. OBJECTIVE: To determine whether inflammatory genetic markers could stratify patients with knee OA into high and low risk for destructive disease. METHODS: Genotype associations with knee OA severity were assessed in two Caucasian populations. Fifteen single nucleotide polymorphisms (SNPs) in six inflammatory genes were evaluated for association with radiographic severity and with synovial fluid mediators in a subset of the patients. RESULTS: Interleukin 1 receptor antagonist (IL1RN) SNPs (rs419598, rs315952 and rs9005) predicted Kellgren-Lawrence scores independently in each population. One IL1RN haplotype was associated with lower odds of radiographic severity (OR=0.15; 95% CI 0.065 to 0.349; p<0.0001), greater joint space width and lower synovial fluid cytokine levels. Carriage of the IL1RN haplotype influenced the age relationship with severity. CONCLUSION: IL1RN polymorphisms reproducibly contribute to disease severity in knee OA and may be useful biomarkers for patient selection in disease-modifying OA drug trials.Item Open Access TNF-α induces phenotypic modulation in cerebral vascular smooth muscle cells: implications for cerebral aneurysm pathology.(Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, 2013-10) Ali, Muhammad S; Starke, Robert M; Jabbour, Pascal M; Tjoumakaris, Stavropoula I; Gonzalez, L Fernando; Rosenwasser, Robert H; Owens, Gary K; Koch, Walter J; Greig, Nigel H; Dumont, Aaron SLittle is known about vascular smooth muscle cell (SMC) phenotypic modulation in the cerebral circulation or pathogenesis of intracranial aneurysms. Tumor necrosis factor-alpha (TNF-α) has been associated with aneurysms, but potential mechanisms are unclear. Cultured rat cerebral SMCs overexpressing myocardin induced expression of key SMC contractile genes (SM-α-actin, SM-22α, smooth muscle myosin heavy chain), while dominant-negative cells suppressed expression. Tumor necrosis factor-alpha treatment inhibited this contractile phenotype and induced pro-inflammatory/matrix-remodeling genes (monocyte chemoattractant protein-1, matrix metalloproteinase-3, matrix metalloproteinase-9, vascular cell adhesion molecule-1, interleukin-1 beta). Tumor necrosis factor-alpha increased expression of KLF4, a known regulator of SMC differentiation. Kruppel-like transcription factor 4 (KLF4) small interfering RNA abrogated TNF-α activation of inflammatory genes and suppression of contractile genes. These mechanisms were confirmed in vivo after exposure of rat carotid arteries to TNF-α and early on in a model of cerebral aneurysm formation. Treatment with the synthesized TNF-α inhibitor 3,6-dithiothalidomide reversed pathologic vessel wall alterations after induced hypertension and hemodynamic stress. Chromatin immunoprecipitation assays in vivo and in vitro demonstrated that TNF-α promotes epigenetic changes through KLF4-dependent alterations in promoter regions of myocardin, SMCs, and inflammatory genes. In conclusion, TNF-α induces phenotypic modulation of cerebral SMCs through myocardin and KLF4-regulated pathways. These results demonstrate a novel role for TNF-α in promoting a pro-inflammatory/matrix-remodeling phenotype, which has important implications for the mechanisms behind intracranial aneurysm formation.