Browsing by Subject "Genetic Testing"
Now showing 1 - 20 of 24
- Results Per Page
- Sort Options
Item Open Access Amino acid-level signal-to-noise analysis of incidentally identified variants in genes associated with long QT syndrome during pediatric whole exome sequencing reflects background genetic noise.(Heart rhythm, 2018-07) Landstrom, Andrew P; Fernandez, Ernesto; Rosenfeld, Jill A; Yang, Yaping; Dailey-Schwartz, Andrew L; Miyake, Christina Y; Allen, Hugh D; Penny, Daniel J; Kim, Jeffrey JBACKGROUND:Due to rapid expansion of clinical genetic testing, an increasing number of genetic variants of undetermined significance and unclear diagnostic value are being identified in children. Variants found in genes associated with heritable channelopathies, such as long QT syndrome (LQTS), are particularly difficult to interpret given the risk of sudden cardiac death associated with pathologic mutations. OBJECTIVE:The purpose of this study was to determine whether variants in LQTS-associated genes from whole exome sequencing (WES) represent disease-associated biomarkers or background genetic "noise." METHODS:WES variants from Baylor Genetics Laboratories were obtained for 17 LQTS-associated genes. Rare variants from healthy controls were obtained from the GnomAD database. LQTS case variants were extracted from the literature. Amino acid-level mapping and signal-to-noise calculations were conducted. Clinical history and diagnostic studies were analyzed for WES subjects evaluated at our institution. RESULTS:Variants in LQTS case-associated genes were present in 38.3% of 7244 WES probands. There was a similar frequency of variants in the WES and healthy cohorts for LQTS1-3 (11.2% and 12.9%, respectively) and LQTS4-17 (27.1% and 38.4%, respectively). WES variants preferentially localized to amino acids altered in control individuals compared to cases. Based on amino acid-level analysis, WES-identified variants are indistinguishable from healthy background variation, whereas LQTS1 and 2 case-identified variants localized to clear pathologic "hotspots." No individuals who underwent clinical evaluation had clinical suspicion for LQTS. CONCLUSION:The prevalence of incidentally identified LQTS-associated variants is ∼38% among WES tests. These variants most likely represent benign healthy background genetic variation rather than disease-associated mutations.Item Open Access Application of a rank-based genetic association test to age-at-onset data from the Collaborative Study on the Genetics of Alcoholism study.(BMC Genet, 2005-12-30) Li, YJ; Martin, ER; Zhang, L; Allen, ASAssociation studies of quantitative traits have often relied on methods in which a normal distribution of the trait is assumed. However, quantitative phenotypes from complex human diseases are often censored, highly skewed, or contaminated with outlying values. We recently developed a rank-based association method that takes into account censoring and makes no distributional assumptions about the trait. In this study, we applied our new method to age-at-onset data on ALDX1 and ALDX2. Both traits are highly skewed (skewness > 1.9) and often censored. We performed a whole genome association study of age at onset of the ALDX1 trait using Illumina single-nucleotide polymorphisms. Only slightly more than 5% of markers were significant. However, we identified two regions on chromosomes 14 and 15, which each have at least four significant markers clustering together. These two regions may harbor genes that regulate age at onset of ALDX1 and ALDX2. Future fine mapping of these two regions with densely spaced markers is warranted.Item Open Access Chapter 11: challenges in and principles for conducting systematic reviews of genetic tests used as predictive indicators.(Journal of general internal medicine, 2012-06) Jonas, Daniel E; Wilt, Timothy J; Taylor, Brent C; Wilkins, Tania M; Matchar, David BIn this paper, we discuss common challenges in and principles for conducting systematic reviews of genetic tests. The types of genetic tests discussed are those used to 1). determine risk or susceptibility in asymptomatic individuals; 2). reveal prognostic information to guide clinical management in those with a condition; or 3). predict response to treatments or environmental factors. This paper is not intended to provide comprehensive guidance on evaluating all genetic tests. Rather, it focuses on issues that have been of particular concern to analysts and stakeholders and on areas that are of particular relevance for the evaluation of studies of genetic tests. The key points include: The general principles that apply in evaluating genetic tests are similar to those for other prognostic or predictive tests, but there are differences in how the principles need to be applied or the degree to which certain issues are relevant. A clear definition of the clinical scenario and an analytic framework is important when evaluating any test, including genetic tests. Organizing frameworks and analytic frameworks are useful constructs for approaching the evaluation of genetic tests. In constructing an analytic framework for evaluating a genetic test, analysts should consider preanalytic, analytic, and postanalytic factors; such factors are useful when assessing analytic validity. Predictive genetic tests are generally characterized by a delayed time between testing and clinically important events. Finding published information on the analytic validity of some genetic tests may be difficult. Web sites (FDA or diagnostic companies) and gray literature may be important sources. In situations where clinical factors associated with risk are well characterized, comparative effectiveness reviews should assess the added value of using genetic testing along with known factors compared with using the known factors alone. For genome-wide association studies, reviewers should determine whether the association has been validated in multiple studies to minimize both potential confounding and publication bias. In addition, reviewers should note whether appropriate adjustments for multiple comparisons were used.Item Open Access Detecting Germline PTEN Mutations Among At-Risk Patients With Cancer: An Age- and Sex-Specific Cost-Effectiveness Analysis.(Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 2015-08) Ngeow, Joanne; Liu, Chang; Zhou, Ke; Frick, Kevin D; Matchar, David B; Eng, CharisPurpose
Cowden syndrome (CS) is an autosomal dominant disorder characterized by benign and malignant tumors. One-quarter of patients who are diagnosed with CS have pathogenic germline PTEN mutations, which increase the risk of the development of breast, thyroid, uterine, renal, and other cancers. PTEN testing and regular, intensive cancer surveillance allow for early detection and treatment of these cancers for mutation-positive patients and their relatives. Individual CS-related features, however, occur commonly in the general population, making it challenging for clinicians to identify CS-like patients to offer PTEN testing.Patients and methods
We calculated the cost per mutation detected and analyzed the cost-effectiveness of performing selected PTEN testing among CS-like patients using a semi-quantitative score (the PTEN Cleveland Clinic [CC] score) compared with existing diagnostic criteria. In our model, first-degree relatives of the patients with detected PTEN mutations are offered PTEN testing. All individuals with detected PTEN mutations are offered cancer surveillance.Results
CC score at a threshold of 15 (CC15) costs from $3,720 to $4,573 to detect one PTEN mutation, which is the most inexpensive among the different strategies. At base-case, CC10 is the most cost-effective strategy for female patients who are younger than 40 years, and CC15 is the most cost-effective strategy for female patients who are between 40 and 60 years of age and male patients of all ages. In sensitivity analyses, CC15 is robustly the most cost-effective strategy for probands who are younger than 60 years.Conclusion
Use of the CC score as a clinical risk calculator is a cost-effective prescreening method to identify CS-like patients for PTEN germline testing.Item Open Access Discovery of the Elusive UDP-Diacylglucosamine Hydrolase in the Lipid A Biosynthetic Pathway in Chlamydia trachomatis.(MBio, 2016-03-22) Young, Hayley E; Zhao, Jinshi; Barker, Jeffrey R; Guan, Ziqiang; Valdivia, Raphael H; Zhou, PeiConstitutive biosynthesis of lipid A via the Raetz pathway is essential for the viability and fitness of Gram-negative bacteria, includingChlamydia trachomatis Although nearly all of the enzymes in the lipid A biosynthetic pathway are highly conserved across Gram-negative bacteria, the cleavage of the pyrophosphate group of UDP-2,3-diacyl-GlcN (UDP-DAGn) to form lipid X is carried out by two unrelated enzymes: LpxH in beta- and gammaproteobacteria and LpxI in alphaproteobacteria. The intracellular pathogenC. trachomatislacks an ortholog for either of these two enzymes, and yet, it synthesizes lipid A and exhibits conservation of genes encoding other lipid A enzymes. Employing a complementation screen against aC. trachomatisgenomic library using a conditional-lethallpxHmutantEscherichia colistrain, we have identified an open reading frame (Ct461, renamedlpxG) encoding a previously uncharacterized enzyme that complements the UDP-DAGn hydrolase function inE. coliand catalyzes the conversion of UDP-DAGn to lipid Xin vitro LpxG shows little sequence similarity to either LpxH or LpxI, highlighting LpxG as the founding member of a third class of UDP-DAGn hydrolases. Overexpression of LpxG results in toxic accumulation of lipid X and profoundly reduces the infectivity ofC. trachomatis, validating LpxG as the long-sought-after UDP-DAGn pyrophosphatase in this prominent human pathogen. The complementation approach presented here overcomes the lack of suitable genetic tools forC. trachomatisand should be broadly applicable for the functional characterization of other essentialC. trachomatisgenes.IMPORTANCEChlamydia trachomatisis a leading cause of infectious blindness and sexually transmitted disease. Due to the lack of robust genetic tools, the functions of manyChlamydiagenes remain uncharacterized, including the essential gene encoding the UDP-DAGn pyrophosphatase activity for the biosynthesis of lipid A, the membrane anchor of lipooligosaccharide and the predominant lipid species of the outer leaflet of the bacterial outer membrane. We designed a complementation screen against theC. trachomatisgenomic library using a conditional-lethal mutant ofE. coliand identified the missing essential gene in the lipid A biosynthetic pathway, which we designatedlpxG We show that LpxG is a member of the calcineurin-like phosphatases and displays robust UDP-DAGn pyrophosphatase activityin vitro Overexpression of LpxG inC. trachomatisleads to the accumulation of the predicted lipid intermediate and reduces bacterial infectivity, validating thein vivofunction of LpxG and highlighting the importance of regulated lipid A biosynthesis inC. trachomatis.Item Open Access Distinguishing arrhythmogenic right ventricular cardiomyopathy/dysplasia-associated mutations from background genetic noise.(Journal of the American College of Cardiology, 2011-06) Kapplinger, JD; Landstrom, AP; Salisbury, BA; Callis, TE; Pollevick, GD; Tester, DJ; Cox, MGPJ; Bhuiyan, Z; Bikker, H; Wiesfeld, ACP; Hauer, RNW; Van Tintelen, JP; Jongbloed, JDH; Calkins, H; Judge, DP; Wilde, AAM; Ackerman, MJOBJECTIVES:The aims of this study were to determine the spectrum and prevalence of "background genetic noise" in the arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC) genetic test and to determine genetic associations that can guide the interpretation of a positive test result. BACKGROUND:ARVC is a potentially lethal genetic cardiovascular disorder characterized by myocyte loss and fibrofatty tissue replacement of the right ventricle. Genetic variation among the ARVC susceptibility genes has not been systematically examined, and little is known about the background noise associated with the ARVC genetic test. METHODS:Using direct deoxyribonucleic acid sequencing, the coding exons/splice junctions of PKP2, DSP, DSG2, DSC2, and TMEM43 were genotyped for 93 probands diagnosed with ARVC from the Netherlands and 427 ostensibly healthy controls of various ethnicities. Eighty-two additional ARVC cases were obtained from published reports, and additional mutations were included from the ARVD/C Genetic Variants Database. RESULTS:The overall yield of mutations among ARVC cases was 58% versus 16% in controls. Radical mutations were hosted by 0.5% of control individuals versus 43% of ARVC cases, while 16% of controls hosted missense mutations versus a similar 21% of ARVC cases. Relative to controls, mutations in cases occurred more frequently in non-Caucasians, localized to the N-terminal regions of DSP and DSG2, and localized to highly conserved residues within PKP2 and DSG2. CONCLUSIONS:This study is the first to comprehensively evaluate genetic variation in healthy controls for the ARVC susceptibility genes. Radical mutations are high-probability ARVC-associated mutations, whereas rare missense mutations should be interpreted in the context of race and ethnicity, mutation location, and sequence conservation.Item Open Access Distinguishing hypertrophic cardiomyopathy-associated mutations from background genetic noise.(Journal of cardiovascular translational research, 2014-04) Kapplinger, JD; Landstrom, AP; Bos, JM; Salisbury, BA; Callis, TE; Ackerman, MJDespite the significant progress that has been made in identifying disease-associated mutations, the utility of the hypertrophic cardiomyopathy (HCM) genetic test is limited by a lack of understanding of the background genetic variation inherent to these sarcomeric genes in seemingly healthy subjects. This study represents the first comprehensive analysis of genetic variation in 427 ostensibly healthy individuals for the HCM genetic test using the "gold standard" Sanger sequencing method validating the background rate identified in the publically available exomes. While mutations are clearly overrepresented in disease, a background rate as high as ∼5 % among healthy individuals prevents diagnostic certainty. To this end, we have identified a number of estimated predictive value-based associations including gene-specific, topology, and conservation methods generating an algorithm aiding in the probabilistic interpretation of an HCM genetic test.Item Open Access Effect of genetic testing for risk of type 2 diabetes mellitus on health behaviors and outcomes: study rationale, development and design.(BMC Health Serv Res, 2012-01-18) Cho, Alex H; Killeya-Jones, Ley A; O'Daniel, Julianne M; Kawamoto, Kensaku; Gallagher, Patrick; Haga, Susanne; Lucas, Joseph E; Trujillo, Gloria M; Joy, Scott V; Ginsburg, Geoffrey SBACKGROUND: Type 2 diabetes is a prevalent chronic condition globally that results in extensive morbidity, decreased quality of life, and increased health services utilization. Lifestyle changes can prevent the development of diabetes, but require patient engagement. Genetic risk testing might represent a new tool to increase patients' motivation for lifestyle changes. Here we describe the rationale, development, and design of a randomized controlled trial (RCT) assessing the clinical and personal utility of incorporating type 2 diabetes genetic risk testing into comprehensive diabetes risk assessments performed in a primary care setting. METHODS/DESIGN: Patients are recruited in the laboratory waiting areas of two primary care clinics and enrolled into one of three study arms. Those interested in genetic risk testing are randomized to receive either a standard risk assessment (SRA) for type 2 diabetes incorporating conventional risk factors plus upfront disclosure of the results of genetic risk testing ("SRA+G" arm), or the SRA alone ("SRA" arm). Participants not interested in genetic risk testing will not receive the test, but will receive SRA (forming a third, "no-test" arm). Risk counseling is provided by clinic staff (not study staff external to the clinic). Fasting plasma glucose, insulin levels, body mass index (BMI), and waist circumference are measured at baseline and 12 months, as are patients' self-reported behavioral and emotional responses to diabetes risk information. Primary outcomes are changes in insulin resistance and BMI after 12 months; secondary outcomes include changes in diet patterns, physical activity, waist circumference, and perceived risk of developing diabetes. DISCUSSION: The utility, feasibility, and efficacy of providing patients with genetic risk information for common chronic diseases in primary care remain unknown. The study described here will help to establish whether providing type 2 diabetes genetic risk information in a primary care setting can help improve patients' clinical outcomes, risk perceptions, and/or their engagement in healthy behavior change. In addition, study design features such as the use of existing clinic personnel for risk counseling could inform the future development and implementation of care models for the use of individual genetic risk information in primary care. TRIAL REGISTRATION: ClinicalTrials.gov: NCT00849563.Item Open Access Genome-wide meta-analysis of cerebral white matter hyperintensities in patients with stroke.(Neurology, 2016-01-12) Traylor, Matthew; Zhang, Cathy R; Adib-Samii, Poneh; Devan, William J; Parsons, Owen E; Lanfranconi, Silvia; Gregory, Sarah; Cloonan, Lisa; Falcone, Guido J; Radmanesh, Farid; Fitzpatrick, Kaitlin; Kanakis, Allison; Barrick, Thomas R; Moynihan, Barry; Lewis, Cathryn M; Boncoraglio, Giorgio B; Lemmens, Robin; Thijs, Vincent; Sudlow, Cathie; Wardlaw, Joanna; Rothwell, Peter M; Meschia, James F; Worrall, Bradford B; Levi, Christopher; Bevan, Steve; Furie, Karen L; Dichgans, Martin; Rosand, Jonathan; Markus, Hugh S; Rost, Natalia; International Stroke Genetics ConsortiumOBJECTIVE: For 3,670 stroke patients from the United Kingdom, United States, Australia, Belgium, and Italy, we performed a genome-wide meta-analysis of white matter hyperintensity volumes (WMHV) on data imputed to the 1000 Genomes reference dataset to provide insights into disease mechanisms. METHODS: We first sought to identify genetic associations with white matter hyperintensities in a stroke population, and then examined whether genetic loci previously linked to WMHV in community populations are also associated in stroke patients. Having established that genetic associations are shared between the 2 populations, we performed a meta-analysis testing which associations with WMHV in stroke-free populations are associated overall when combined with stroke populations. RESULTS: There were no associations at genome-wide significance with WMHV in stroke patients. All previously reported genome-wide significant associations with WMHV in community populations shared direction of effect in stroke patients. In a meta-analysis of the genome-wide significant and suggestive loci (p < 5 × 10(-6)) from community populations (15 single nucleotide polymorphisms in total) and from stroke patients, 6 independent loci were associated with WMHV in both populations. Four of these are novel associations at the genome-wide level (rs72934505 [NBEAL1], p = 2.2 × 10(-8); rs941898 [EVL], p = 4.0 × 10(-8); rs962888 [C1QL1], p = 1.1 × 10(-8); rs9515201 [COL4A2], p = 6.9 × 10(-9)). CONCLUSIONS: Genetic associations with WMHV are shared in otherwise healthy individuals and patients with stroke, indicating common genetic susceptibility in cerebral small vessel disease.Item Open Access Improved estimation of cancer dependencies from large-scale RNAi screens using model-based normalization and data integration.(Nature communications, 2018-11-02) McFarland, James M; Ho, Zandra V; Kugener, Guillaume; Dempster, Joshua M; Montgomery, Phillip G; Bryan, Jordan G; Krill-Burger, John M; Green, Thomas M; Vazquez, Francisca; Boehm, Jesse S; Golub, Todd R; Hahn, William C; Root, David E; Tsherniak, AviadThe availability of multiple datasets comprising genome-scale RNAi viability screens in hundreds of diverse cancer cell lines presents new opportunities for understanding cancer vulnerabilities. Integrated analyses of these data to assess differential dependency across genes and cell lines are challenging due to confounding factors such as batch effects and variable screen quality, as well as difficulty assessing gene dependency on an absolute scale. To address these issues, we incorporated cell line screen-quality parameters and hierarchical Bayesian inference into DEMETER2, an analytical framework for analyzing RNAi screens ( https://depmap.org/R2-D2 ). This model substantially improves estimates of gene dependency across a range of performance measures, including identification of gold-standard essential genes and agreement with CRISPR/Cas9-based viability screens. It also allows us to integrate information across three large RNAi screening datasets, providing a unified resource representing the most extensive compilation of cancer cell line genetic dependencies to date.Item Open Access Interpreting Incidentally Identified Variants in Genes Associated With Catecholaminergic Polymorphic Ventricular Tachycardia in a Large Cohort of Clinical Whole-Exome Genetic Test Referrals.(Circulation. Arrhythmia and electrophysiology, 2017-04) Landstrom, AP; Dailey-Schwartz, AL; Rosenfeld, JA; Yang, Y; McLean, MJ; Miyake, CY; Valdes, SO; Fan, Y; Allen, HD; Penny, DJ; Kim, JJBACKGROUND:The rapid expansion of genetic testing has led to increased utilization of clinical whole-exome sequencing (WES). Clinicians and genetic researchers are being faced with assessing risk of disease vulnerability from incidentally identified genetic variants which is typified by variants found in genes associated with sudden death-predisposing catecholaminergic polymorphic ventricular tachycardia (CPVT). We sought to determine whether incidentally identified variants in genes associated with CPVT from WES clinical testing represent disease-associated biomarkers. METHODS AND RESULTS:CPVT-associated genes RYR2 and CASQ2 variants were identified in one of the world's largest collections of clinical WES referral tests (N=6517, Baylor Miraca Genetics Laboratories) and compared with a control cohort of ostensibly healthy individuals (N=60 706) and a case cohort of CPVT cases (N=155). Within the WES cohort, the rate of rare variants in CPVT-associated genes was 8.8% compared with 6.0% among controls and 60.0% among cases. There was a predominance of variants of undetermined significance (97.7%). After protein topology mapping, WES variants colocalized more frequently to residues with variants found in controls compared with cases. Retrospective clinical evaluation of individuals referred to our institution with WES-positive variants demonstrated no evidence of clinical CPVT in individuals with a low pretest clinical suspicion for CPVT. CONCLUSIONS:The prevalence of incidentally identified CPVT-associated variants is ≈9% among WES tests. Variants of undetermined significances in CPVT-associated genes in WES genetic testing, in the absence of clinical suspicion for CPVT, are unlikely to represent markers of CPVT pathogenicity.Item Open Access Molecular genetic testing and the future of clinical genomics.(Nature reviews. Genetics, 2013-06) Katsanis, Sara Huston; Katsanis, NicholasGenomic technologies are reaching the point of being able to detect genetic variation in patients at high accuracy and reduced cost, offering the promise of fundamentally altering medicine. Still, although scientists and policy advisers grapple with how to interpret and how to handle the onslaught and ambiguity of genome-wide data, established and well-validated molecular technologies continue to have an important role, especially in regions of the world that have more limited access to next-generation sequencing capabilities. Here we review the range of methods currently available in a clinical setting as well as emerging approaches in clinical molecular diagnostics. In parallel, we outline implementation challenges that will be necessary to address to ensure the future of genetic medicine.Item Open Access On-Site Nurse-Led Cancer Genetics Program Increases Cancer Genetic Testing Completion in Black Veterans.(JCO oncology practice, 2023-08) Shevach, Jeffrey W; Aiello, Lisa B; Lynch, Julie A; Petersen, Jeffrey; Hoffman-Hogg, Lori; Hartzfeld, Deborah; Lundquist, Margaret; Kelley, Michael J; Scheuner, Maren T; Montgomery, Robert; Damjanov, Nevena; Robinson, Kyle; Wong, Yu-Ning; Jhala, Darshana; Parikh, Ravi B; Maxwell, Kara NPurpose
Telegenetics services can expand access to guideline-recommended cancer genetic testing. However, access is often not distributed equitably to all races and ethnicities. We evaluated the impact of an on-site nurse-led cancer genetics service in a diverse Veterans Affairs Medical Center (VAMC) oncology clinic on likelihood of germline testing (GT) completion.Methods
We conducted an observational retrospective cohort study of patients who were referred for cancer genetics services at the Philadelphia VAMC between October 1, 2020, and February 28, 2022. We evaluated the association between genetics service (on-site v telegenetics) and likelihood of GT completion in a subcohort of new consults, excluding patients with prior consults and those referred for known history of germline mutations.Results
A total of 238 Veterans, including 108 (45%) seen on site, were identified for cancer genetics services during the study period, with the majority referred for a personal (65%) or family (26%) history of cancer. In the subcohort of new consults, 121 Veterans (54% self-identified race/ethnicity [SIRE]-Black), including 60 (50%) seen on site, were included in the analysis of germline genetic testing completion. In a univariate analysis, patients who were seen by the on-site genetics service had 3.2-fold higher likelihood of completing GT (relative risk, 3.22; 95% CI, 1.89 to 5.48) compared with the telegenetics service. In multivariable regression analysis, the on-site genetics service was associated with higher likelihood of GT completion, but this association was only statistically significant in SIRE-Black compared with SIRE-White Veterans (adjusted RR, 4.78; 95% CI, 1.53 to 14.96; P < .001; P-interaction of race × genetics service = .016).Conclusion
An on-site nurse-led cancer genetics service embedded in a VAMC Oncology practice was associated with higher likelihood of germline genetic testing completion than a telegenetics service among self-identified Black Veterans.Item Open Access Personal DNA testing in college classrooms: perspectives of students and professors.(Genetic testing and molecular biomarkers, 2013-06) Daley, Lori-Ann A; Wagner, Jennifer K; Himmel, Tiffany L; McPartland, Kaitlyn A; Katsanis, Sara H; Shriver, Mark D; Royal, Charmaine DDiscourse on the integration of personal genetics and genomics into classrooms is increasing; however, limited data have been collected on the perspectives of students and professors. We conducted a cross-sectional survey of undergraduate and graduate students as well as professors at two major universities to assess attitudes regarding the use of personal DNA testing and other personalized activities in college classrooms. Students indicated that they were more likely to enroll (60.2%) in a genetics course if it offered personal DNA testing; undergraduate students were more likely than graduate students to enroll if personal DNA testing was offered (p=0.029). Students who majored in the physical sciences were less likely to enroll than students in the biological or social sciences (p=0.019). Students also indicated that when course material is personalized, the course is more interesting (94.6%) and the material is easier to learn (87.3%). Professors agreed that adding a personalized element increases student interest, participation, and learning (86.0%, 82.6%, and 72.6%, respectively). The results of this study indicate that, overall, students and professors had a favorable view of the integration of personalized information, including personal DNA testing, into classroom activities, and students welcomed more opportunities to participate in personalized activities.Item Open Access PLN-encoded phospholamban mutation in a large cohort of hypertrophic cardiomyopathy cases: summary of the literature and implications for genetic testing.(American heart journal, 2011-01) Landstrom, AP; Adekola, BA; Bos, JM; Ommen, SR; Ackerman, MJBACKGROUND:hypertrophic cardiomyopathy (HCM) is a major cause of sudden death in young athletes and one of the most common inherited cardiovascular diseases, affecting 1 in 500 individuals. Often viewed as a disease of the cardiac sarcomere, mutations in genes encoding myofilament proteins are associated with disease pathogenesis. Despite a clinically available genetic test, a significant portion of HCM patients remain genetically unexplained. We sought to determine the spectrum and prevalence of mutations in PLN-encoded phospholamban in a large cohort of HCM cases as a potential cause of mutation-negative HCM. METHODS:comprehensive genetic interrogation of the promoter and coding region of PLN was conducted using polymerase chain reaction, denaturing high-performance liquid chromatography, and direct DNA sequencing. RESULTS:one L39X nonsense mutation was identified in 1 of 1,064 HCM proband cases with a family history of HCM, previously found to be negative for the current HCM genetic test panel. This mutation cosegregated with incidence of HCM in a multigenerational family. Compared with similar studies, we identified an overall yield of PLN-HCM mutations of 0.65%, similar to 3 genes that are part of current HCM genetic test panels. We did not observe any PLN coding sequence genetic variation in 600 reference alleles. CONCLUSIONS:overall, mutations in PLN are rare in frequency, yet the small size of the genetic locus may make it amenable to inclusion on HCM gene test panels, especially because the frequency of background genetic variation among otherwise healthy subjects appears negligible. The exact role of mutations in PLN and other calcium-handling proteins in the development of HCM warrants further investigation.Item Open Access Population genetic analyses reveal the African origin and strain variation of Cryptococcus neoformans var. grubii.(PLoS Pathog, 2012-02) Litvintseva, Anastasia P; Mitchell, Thomas GItem Open Access Population-based biobank participants' preferences for receiving genetic test results.(Journal of human genetics, 2017-12) Yamamoto, Kayono; Hachiya, Tsuyoshi; Fukushima, Akimune; Nakaya, Naoki; Okayama, Akira; Tanno, Kozo; Aizawa, Fumie; Tokutomi, Tomoharu; Hozawa, Atsushi; Shimizu, AtsushiThere are ongoing debates on issues relating to returning individual research results (IRRs) and incidental findings (IFs) generated by genetic research in population-based biobanks. To understand how to appropriately return genetic results from biobank studies, we surveyed preferences for returning IRRs and IFs among participants of the Tohoku Medical Megabank Project (TMM). We mailed a questionnaire to individuals enrolled in the TMM cohort study (Group 1; n=1031) and a group of Tohoku region residents (Group 2; n=2314). The respondents were required to be over 20 years of age. Nearly 90% of Group 1 participants and over 80% of Group 2 participants expressed a preference for receiving their genetic test results. Furthermore, over 60% of both groups preferred to receive their genetic results 'from a genetic specialist.' A logistic regression analysis revealed that engaging in 'health-conscious behaviors' (such as regular physical activity, having a healthy diet, intentionally reducing alcohol intake and/or smoking and so on) was significant, positively associated with preferring to receive their genetic test results (odds ratio=2.397 (Group 1) and 1.897 (Group 2)). Our findings provided useful information and predictors regarding the return of IRRs and IFs in a population-based biobank.Item Open Access Racial and ethnic disparities in genomic testing among lung cancer patients: a systematic review.(Journal of the National Cancer Institute, 2024-06) Meernik, Clare; Raveendran, Yadurshini; Kolarova, Michaela; Rahman, Fariha; Olunuga, Ebunoluwa; Hammond, Emmery; Shivaramakrishnan, Akhilesh; Hendren, Steph; Bosworth, Hayden B; Check, Devon K; Green, Michelle; Strickler, John H; Akinyemiju, TomiBackground
Racial and ethnic disparities in genomic testing could exacerbate disparities in access to precision cancer therapies and survival-particularly in the context of lung cancer where genomic testing has been recommended for the past decade. However, prior studies assessing disparities in genomic testing have yielded mixed results.Methods
We conducted a systemic review to examine racial and ethnic disparities in the use of genomic testing among lung cancer patients in the United States. Two comprehensive searches in PubMed, Embase, and Scopus were conducted (September 2022, May 2023). Original studies that assessed rates of genomic testing by race or ethnicity were included. Findings were narratively synthesized by outcome.Results
The search yielded 2739 unique records, resulting in 18 included studies. All but 1 study were limited to patients diagnosed with non-small cell lung cancer. Diagnosis years ranged from 2007 to 2022. Of the 18 studies, 11 found statistically significant differences in the likelihood of genomic testing by race or ethnicity; in 7 of these studies, testing was lower among Black patients compared with White or Asian patients. However, many studies lacked adjustment for key covariates and included patients with unclear eligibility for testing.Conclusions
A majority of studies, though not all, observed racial and ethnic disparities in the use of genomic testing among patients with lung cancer. Heterogeneity of study results throughout a period of changing clinical guidelines suggests that minoritized populations-Black patients in particular-have faced additional barriers to genomic testing, even if not universally observed at all institutions.Item Open Access Rare hereditary COL4A3/COL4A4 variants may be mistaken for familial focal segmental glomerulosclerosis.(Kidney Int, 2014-12) Malone, Andrew F; Phelan, Paul J; Hall, Gentzon; Cetincelik, Umran; Homstad, Alison; Alonso, Andrea S; Jiang, Ruiji; Lindsey, Thomas B; Wu, Guanghong; Sparks, Matthew A; Smith, Stephen R; Webb, Nicholas JA; Kalra, Philip A; Adeyemo, Adebowale A; Shaw, Andrey S; Conlon, Peter J; Jennette, J Charles; Howell, David N; Winn, Michelle P; Gbadegesin, Rasheed AFocal segmental glomerulosclerosis (FSGS) is a histological lesion with many causes, including inherited genetic defects, with significant proteinuria being the predominant clinical finding at presentation. Mutations in COL4A3 and COL4A4 are known to cause Alport syndrome (AS), thin basement membrane nephropathy, and to result in pathognomonic glomerular basement membrane (GBM) findings. Secondary FSGS is known to develop in classic AS at later stages of the disease. Here, we present seven families with rare or novel variants in COL4A3 or COL4A4 (six with single and one with two heterozygous variants) from a cohort of 70 families with a diagnosis of hereditary FSGS. The predominant clinical finding at diagnosis was proteinuria associated with hematuria. In all seven families, there were individuals with nephrotic-range proteinuria with histologic features of FSGS by light microscopy. In one family, electron microscopy showed thin GBM, but four other families had variable findings inconsistent with classical Alport nephritis. There was no recurrence of disease after kidney transplantation. Families with COL4A3 and COL4A4 variants that segregated with disease represent 10% of our cohort. Thus, COL4A3 and COL4A4 variants should be considered in the interpretation of next-generation sequencing data from such patients. Furthermore, this study illustrates the power of molecular genetic diagnostics in the clarification of renal phenotypes.Item Open Access Researcher practices on returning genetic research results.(Genet Test Mol Biomarkers, 2010-12) Heaney, Christopher; Tindall, Genevieve; Lucas, Joe; Haga, Susanne BBACKGROUND/AIMS: as genetic and genomic research proliferates, debate has ensued about returning results to participants. In addition to consideration of the benefits and harms to participants, researchers must also consider the logistical and financial feasibility of returning research results. However, little data exist of actual researcher practices. METHODS: we conducted an online survey of 446 corresponding authors of genetic/genomic studies conducted in the United States and published in 2006-2007 to assess the frequency with which they considered, offered to, or actually returned research results, what factors influenced these decisions, and the method of communicating results. RESULTS: the response rate was 24% (105/446). Fifty-four percent of respondents considered the issue of returning research results to participants, 28% offered to return individual research results, and 24% actually returned individual research results. Of those who considered the issue of returning research results during the study planning phase, the most common factors considered were whether research results were deemed clinically useful (18%) and respect for participants (13%). Researchers who had a medical degree and conducted studies on children were significantly more likely to offer to return or actually return individual results compared to those with a Ph.D. only. CONCLUSIONS: we speculate that issues associated with clinical validity and respect for participants dominated concerns of time and expense given the prominent and continuing ethical debates surrounding genetics and genomics research. The substantial number of researchers who did not consider returning research results suggests that researchers and institutional review boards need to devote more attention to a topic about which research participants are interested.