Browsing by Subject "Genetic Variation"
Now showing 1 - 20 of 78
- Results Per Page
- Sort Options
Item Open Access A framework for detecting noncoding rare-variant associations of large-scale whole-genome sequencing studies.(Nature methods, 2022-12) Li, Zilin; Li, Xihao; Zhou, Hufeng; Gaynor, Sheila M; Selvaraj, Margaret Sunitha; Arapoglou, Theodore; Quick, Corbin; Liu, Yaowu; Chen, Han; Sun, Ryan; Dey, Rounak; Arnett, Donna K; Auer, Paul L; Bielak, Lawrence F; Bis, Joshua C; Blackwell, Thomas W; Blangero, John; Boerwinkle, Eric; Bowden, Donald W; Brody, Jennifer A; Cade, Brian E; Conomos, Matthew P; Correa, Adolfo; Cupples, L Adrienne; Curran, Joanne E; de Vries, Paul S; Duggirala, Ravindranath; Franceschini, Nora; Freedman, Barry I; Göring, Harald HH; Guo, Xiuqing; Kalyani, Rita R; Kooperberg, Charles; Kral, Brian G; Lange, Leslie A; Lin, Bridget M; Manichaikul, Ani; Manning, Alisa K; Martin, Lisa W; Mathias, Rasika A; Meigs, James B; Mitchell, Braxton D; Montasser, May E; Morrison, Alanna C; Naseri, Take; O'Connell, Jeffrey R; Palmer, Nicholette D; Peyser, Patricia A; Psaty, Bruce M; Raffield, Laura M; Redline, Susan; Reiner, Alexander P; Reupena, Muagututi'a Sefuiva; Rice, Kenneth M; Rich, Stephen S; Smith, Jennifer A; Taylor, Kent D; Taub, Margaret A; Vasan, Ramachandran S; Weeks, Daniel E; Wilson, James G; Yanek, Lisa R; Zhao, Wei; NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium; TOPMed Lipids Working Group; Rotter, Jerome I; Willer, Cristen J; Natarajan, Pradeep; Peloso, Gina M; Lin, XihongLarge-scale whole-genome sequencing studies have enabled analysis of noncoding rare-variant (RV) associations with complex human diseases and traits. Variant-set analysis is a powerful approach to study RV association. However, existing methods have limited ability in analyzing the noncoding genome. We propose a computationally efficient and robust noncoding RV association detection framework, STAARpipeline, to automatically annotate a whole-genome sequencing study and perform flexible noncoding RV association analysis, including gene-centric analysis and fixed window-based and dynamic window-based non-gene-centric analysis by incorporating variant functional annotations. In gene-centric analysis, STAARpipeline uses STAAR to group noncoding variants based on functional categories of genes and incorporate multiple functional annotations. In non-gene-centric analysis, STAARpipeline uses SCANG-STAAR to incorporate dynamic window sizes and multiple functional annotations. We apply STAARpipeline to identify noncoding RV sets associated with four lipid traits in 21,015 discovery samples from the Trans-Omics for Precision Medicine (TOPMed) program and replicate several of them in an additional 9,123 TOPMed samples. We also analyze five non-lipid TOPMed traits.Item Open Access A Genocentric Approach to Discovery of Mendelian Disorders.(American journal of human genetics, 2019-11) Hansen, Adam W; Murugan, Mullai; Li, He; Khayat, Michael M; Wang, Liwen; Rosenfeld, Jill; Andrews, B Kim; Jhangiani, Shalini N; Coban Akdemir, Zeynep H; Sedlazeck, Fritz J; Ashley-Koch, Allison E; Liu, Pengfei; Muzny, Donna M; Task Force for Neonatal Genomics; Davis, Erica E; Katsanis, Nicholas; Sabo, Aniko; Posey, Jennifer E; Yang, Yaping; Wangler, Michael F; Eng, Christine M; Sutton, V Reid; Lupski, James R; Boerwinkle, Eric; Gibbs, Richard AThe advent of inexpensive, clinical exome sequencing (ES) has led to the accumulation of genetic data from thousands of samples from individuals affected with a wide range of diseases, but for whom the underlying genetic and molecular etiology of their clinical phenotype remains unknown. In many cases, detailed phenotypes are unavailable or poorly recorded and there is little family history to guide study. To accelerate discovery, we integrated ES data from 18,696 individuals referred for suspected Mendelian disease, together with relatives, in an Apache Hadoop data lake (Hadoop Architecture Lake of Exomes [HARLEE]) and implemented a genocentric analysis that rapidly identified 154 genes harboring variants suspected to cause Mendelian disorders. The approach did not rely on case-specific phenotypic classifications but was driven by optimization of gene- and variant-level filter parameters utilizing historical Mendelian disease-gene association discovery data. Variants in 19 of the 154 candidate genes were subsequently reported as causative of a Mendelian trait and additional data support the association of all other candidate genes with disease endpoints.Item Open Access A genome-wide association study of upper aerodigestive tract cancers conducted within the INHANCE consortium.(PLoS genetics, 2011-03-17) McKay, James D; Truong, Therese; Gaborieau, Valerie; Chabrier, Amelie; Chuang, Shu-Chun; Byrnes, Graham; Zaridze, David; Shangina, Oxana; Szeszenia-Dabrowska, Neonila; Lissowska, Jolanta; Rudnai, Peter; Fabianova, Eleonora; Bucur, Alexandru; Bencko, Vladimir; Holcatova, Ivana; Janout, Vladimir; Foretova, Lenka; Lagiou, Pagona; Trichopoulos, Dimitrios; Benhamou, Simone; Bouchardy, Christine; Ahrens, Wolfgang; Merletti, Franco; Richiardi, Lorenzo; Talamini, Renato; Barzan, Luigi; Kjaerheim, Kristina; Macfarlane, Gary J; Macfarlane, Tatiana V; Simonato, Lorenzo; Canova, Cristina; Agudo, Antonio; Castellsagué, Xavier; Lowry, Ray; Conway, David I; McKinney, Patricia A; Healy, Claire M; Toner, Mary E; Znaor, Ariana; Curado, Maria Paula; Koifman, Sergio; Menezes, Ana; Wünsch-Filho, Victor; Neto, José Eluf; Garrote, Leticia Fernández; Boccia, Stefania; Cadoni, Gabriella; Arzani, Dario; Olshan, Andrew F; Weissler, Mark C; Funkhouser, William K; Luo, Jingchun; Lubiński, Jan; Trubicka, Joanna; Lener, Marcin; Oszutowska, Dorota; Schwartz, Stephen M; Chen, Chu; Fish, Sherianne; Doody, David R; Muscat, Joshua E; Lazarus, Philip; Gallagher, Carla J; Chang, Shen-Chih; Zhang, Zuo-Feng; Wei, Qingyi; Sturgis, Erich M; Wang, Li-E; Franceschi, Silvia; Herrero, Rolando; Kelsey, Karl T; McClean, Michael D; Marsit, Carmen J; Nelson, Heather H; Romkes, Marjorie; Buch, Shama; Nukui, Tomoko; Zhong, Shilong; Lacko, Martin; Manni, Johannes J; Peters, Wilbert HM; Hung, Rayjean J; McLaughlin, John; Vatten, Lars; Njølstad, Inger; Goodman, Gary E; Field, John K; Liloglou, Triantafillos; Vineis, Paolo; Clavel-Chapelon, Francoise; Palli, Domenico; Tumino, Rosario; Krogh, Vittorio; Panico, Salvatore; González, Carlos A; Quirós, J Ramón; Martínez, Carmen; Navarro, Carmen; Ardanaz, Eva; Larrañaga, Nerea; Khaw, Kay-Tee; Key, Timothy; Bueno-de-Mesquita, H Bas; Peeters, Petra HM; Trichopoulou, Antonia; Linseisen, Jakob; Boeing, Heiner; Hallmans, Göran; Overvad, Kim; Tjønneland, Anne; Kumle, Merethe; Riboli, Elio; Välk, Kristjan; Vooder, Tõnu; Metspalu, Andres; Zelenika, Diana; Boland, Anne; Delepine, Marc; Foglio, Mario; Lechner, Doris; Blanché, Hélène; Gut, Ivo G; Galan, Pilar; Heath, Simon; Hashibe, Mia; Hayes, Richard B; Boffetta, Paolo; Lathrop, Mark; Brennan, PaulGenome-wide association studies (GWAS) have been successful in identifying common genetic variation involved in susceptibility to etiologically complex disease. We conducted a GWAS to identify common genetic variation involved in susceptibility to upper aero-digestive tract (UADT) cancers. Genome-wide genotyping was carried out using the Illumina HumanHap300 beadchips in 2,091 UADT cancer cases and 3,513 controls from two large European multi-centre UADT cancer studies, as well as 4,821 generic controls. The 19 top-ranked variants were investigated further in an additional 6,514 UADT cancer cases and 7,892 controls of European descent from an additional 13 UADT cancer studies participating in the INHANCE consortium. Five common variants presented evidence for significant association in the combined analysis (p ≤ 5 × 10⁻⁷). Two novel variants were identified, a 4q21 variant (rs1494961, p = 1×10⁻⁸) located near DNA repair related genes HEL308 and FAM175A (or Abraxas) and a 12q24 variant (rs4767364, p =2 × 10⁻⁸) located in an extended linkage disequilibrium region that contains multiple genes including the aldehyde dehydrogenase 2 (ALDH2) gene. Three remaining variants are located in the ADH gene cluster and were identified previously in a candidate gene study involving some of these samples. The association between these three variants and UADT cancers was independently replicated in 5,092 UADT cancer cases and 6,794 controls non-overlapping samples presented here (rs1573496-ADH7, p = 5 × 10⁻⁸); rs1229984-ADH1B, p = 7 × 10⁻⁹; and rs698-ADH1C, p = 0.02). These results implicate two variants at 4q21 and 12q24 and further highlight three ADH variants in UADT cancer susceptibility.Item Open Access A longitudinal study of epigenetic variation in twins.(Epigenetics, 2010-08-16) Wong, Chloe Chung Yi; Caspi, Avshalom; Williams, Benjamin; Craig, Ian W; Houts, Renate; Ambler, Antony; Moffitt, Terrie E; Mill, JonathanDNA methylation is a key epigenetic mechanism involved in the developmental regulation of gene expression. Alterations in DNA methylation are established contributors to inter-individual phenotypic variation and have been associated with disease susceptibility. The degree to which changes in loci-specific DNA methylation are under the influence of heritable and environmental factors is largely unknown. In this study, we quantitatively measured DNA methylation across the promoter regions of the dopamine receptor 4 gene (DRD4), the serotonin transporter gene (SLC6A4/SERT) and the X-linked monoamine oxidase A gene (MAOA) using DNA sampled at both ages 5 and 10 years in 46 MZ twin-pairs and 45 DZ twin-pairs (total n=182). Our data suggest that DNA methylation differences are apparent already in early childhood, even between genetically identical individuals, and that individual differences in methylation are not stable over time. Our longitudinal-developmental study suggests that environmental influences are important factors accounting for interindividual DNA methylation differences, and that these influences differ across the genome. The observation of dynamic changes in DNA methylation over time highlights the importance of longitudinal research designs for epigenetic research.Item Open Access A molecular phylogeny of the fern family Pteridaceae: assessing overall relationships and the affinities of previously unsampled genera.(Molecular phylogenetics and evolution, 2007-09) Schuettpelz, E; Schneider, H; Huiet, L; Windham, MD; Pryer, KMThe monophyletic Pteridaceae accounts for roughly 10% of extant fern diversity and occupies an unusually broad range of ecological niches, including terrestrial, epiphytic, xeric-adapted rupestral, and even aquatic species. In this study, we present the results of the first broad-scale and multi-gene phylogenetic analyses of these ferns, and determine the affinities of several previously unsampled genera. Our analyses of two newly assembled data sets (including 169 newly obtained sequences) resolve five major clades within the Pteridaceae: cryptogrammoids, ceratopteridoids, pteridoids, adiantoids, and cheilanthoids. Although the composition of these clades is in general agreement with earlier phylogenetic studies, it is very much at odds with the most recent subfamilial classification. Of the previously unsampled genera, two (Neurocallis and Ochropteris) are nested within the genus Pteris; two others (Monogramma and Rheopteris) are early diverging vittarioid ferns, with Monogramma resolved as polyphyletic; the last previously unsampled genus (Adiantopsis) occupies a rather derived position among cheilanthoids. Interestingly, some clades resolved within the Pteridaceae can be characterized by their ecological preferences, suggesting that the initial diversification in this family was tied to ecological innovation and specialization. These processes may well be the basis for the diversity and success of the Pteridaceae today.Item Open Access A Quantitative Analysis of Growth and Size Regulation in Manduca sexta: The Physiological Basis of Variation in Size and Age at Metamorphosis.(PLoS One, 2015) Grunert, Laura W; Clarke, Jameson W; Ahuja, Chaarushi; Eswaran, Harish; Nijhout, H FrederikBody size and development time are important life history traits because they are often highly correlated with fitness. Although the developmental mechanisms that control growth have been well studied, the mechanisms that control how a species-characteristic body size is achieved remain poorly understood. In insects adult body size is determined by the number of larval molts, the size increment at each molt, and the mechanism that determines during which instar larval growth will stop. Adult insects do not grow, so the size at which a larva stops growing determines adult body size. Here we develop a quantitative understanding of the kinetics of growth throughout larval life of Manduca sexta, under different conditions of nutrition and temperature, and for genetic strains with different adult body sizes. We show that the generally accepted view that the size increment at each molt is constant (Dyar's Rule) is systematically violated: there is actually a progressive increase in the size increment from instar to instar that is independent of temperature. In addition, the mass-specific growth rate declines throughout the growth phase in a temperature-dependent manner. We show that growth within an instar follows a truncated Gompertz trajectory. The critical weight, which determines when in an instar a molt will occur, and the threshold size, which determines which instar is the last, are different in genetic strains with different adult body sizes. Under nutrient and temperature stress Manduca has a variable number of larval instars and we show that this is due to the fact that more molts at smaller increments are taken before threshold size is reached. We test whether the new insight into the kinetics of growth and size determination are sufficient to explain body size and development time through a mathematical model that incorporates our quantitative findings.Item Open Access A refined model of the genomic basis for phenotypic variation in vertebrate hemostasis.(BMC Evol Biol, 2015-06-30) Ribeiro, Ângela M; Zepeda-Mendoza, M Lisandra; Bertelsen, Mads F; Kristensen, Annemarie T; Jarvis, Erich D; Gilbert, M Thomas P; da Fonseca, Rute RBACKGROUND: Hemostasis is a defense mechanism that enhances an organism's survival by minimizing blood loss upon vascular injury. In vertebrates, hemostasis has been evolving with the cardio-vascular and hemodynamic systems over the last 450 million years. Birds and mammals have very similar vascular and hemodynamic systems, thus the mechanism that blocks ruptures in the vasculature is expected to be the same. However, the speed of the process varies across vertebrates, and is particularly slow for birds. Understanding the differences in the hemostasis pathway between birds and mammals, and placing them in perspective to other vertebrates may provide clues to the genetic contribution to variation in blood clotting phenotype in vertebrates. We compiled genomic data corresponding to key elements involved in hemostasis across vertebrates to investigate its genetic basis and understand how it affects fitness. RESULTS: We found that: i) fewer genes are involved in hemostasis in birds compared to mammals; and ii) the largest differences concern platelet membrane receptors and components from the kallikrein-kinin system. We propose that lack of the cytoplasmic domain of the GPIb receptor subunit alpha could be a strong contributor to the prolonged bleeding phenotype in birds. Combined analysis of laboratory assessments of avian hemostasis with the first avian phylogeny based on genomic-scale data revealed that differences in hemostasis within birds are not explained by phylogenetic relationships, but more so by genetic variation underlying components of the hemostatic process, suggestive of natural selection. CONCLUSIONS: This work adds to our understanding of the evolution of hemostasis in vertebrates. The overlap with the inflammation, complement and renin-angiotensin (blood pressure regulation) pathways is a potential driver of rapid molecular evolution in the hemostasis network. Comparisons between avian species and mammals allowed us to hypothesize that the observed mammalian innovations might have contributed to the diversification of mammals that give birth to live young.Item Open Access Amino acid-level signal-to-noise analysis of incidentally identified variants in genes associated with long QT syndrome during pediatric whole exome sequencing reflects background genetic noise.(Heart rhythm, 2018-07) Landstrom, Andrew P; Fernandez, Ernesto; Rosenfeld, Jill A; Yang, Yaping; Dailey-Schwartz, Andrew L; Miyake, Christina Y; Allen, Hugh D; Penny, Daniel J; Kim, Jeffrey JBACKGROUND:Due to rapid expansion of clinical genetic testing, an increasing number of genetic variants of undetermined significance and unclear diagnostic value are being identified in children. Variants found in genes associated with heritable channelopathies, such as long QT syndrome (LQTS), are particularly difficult to interpret given the risk of sudden cardiac death associated with pathologic mutations. OBJECTIVE:The purpose of this study was to determine whether variants in LQTS-associated genes from whole exome sequencing (WES) represent disease-associated biomarkers or background genetic "noise." METHODS:WES variants from Baylor Genetics Laboratories were obtained for 17 LQTS-associated genes. Rare variants from healthy controls were obtained from the GnomAD database. LQTS case variants were extracted from the literature. Amino acid-level mapping and signal-to-noise calculations were conducted. Clinical history and diagnostic studies were analyzed for WES subjects evaluated at our institution. RESULTS:Variants in LQTS case-associated genes were present in 38.3% of 7244 WES probands. There was a similar frequency of variants in the WES and healthy cohorts for LQTS1-3 (11.2% and 12.9%, respectively) and LQTS4-17 (27.1% and 38.4%, respectively). WES variants preferentially localized to amino acids altered in control individuals compared to cases. Based on amino acid-level analysis, WES-identified variants are indistinguishable from healthy background variation, whereas LQTS1 and 2 case-identified variants localized to clear pathologic "hotspots." No individuals who underwent clinical evaluation had clinical suspicion for LQTS. CONCLUSION:The prevalence of incidentally identified LQTS-associated variants is ∼38% among WES tests. These variants most likely represent benign healthy background genetic variation rather than disease-associated mutations.Item Unknown An Atlas of Genetic Variation Linking Pathogen-Induced Cellular Traits to Human Disease.(Cell host & microbe, 2018-08) Wang, Liuyang; Pittman, Kelly J; Barker, Jeffrey R; Salinas, Raul E; Stanaway, Ian B; Williams, Graham D; Carroll, Robert J; Balmat, Tom; Ingham, Andy; Gopalakrishnan, Anusha M; Gibbs, Kyle D; Antonia, Alejandro L; eMERGE Network; Heitman, Joseph; Lee, Soo Chan; Jarvik, Gail P; Denny, Joshua C; Horner, Stacy M; DeLong, Mark R; Valdivia, Raphael H; Crosslin, David R; Ko, Dennis CPathogens have been a strong driving force for natural selection. Therefore, understanding how human genetic differences impact infection-related cellular traits can mechanistically link genetic variation to disease susceptibility. Here we report the Hi-HOST Phenome Project (H2P2): a catalog of cellular genome-wide association studies (GWAS) comprising 79 infection-related phenotypes in response to 8 pathogens in 528 lymphoblastoid cell lines. Seventeen loci surpass genome-wide significance for infection-associated phenotypes ranging from pathogen replication to cytokine production. We combined H2P2 with clinical association data from patients to identify a SNP near CXCL10 as a risk factor for inflammatory bowel disease. A SNP in the transcriptional repressor ZBTB20 demonstrated pleiotropy, likely through suppression of multiple target genes, and was associated with viral hepatitis. These data are available on a web portal to facilitate interpreting human genome variation through the lens of cell biology and should serve as a rich resource for the research community.Item Open Access Analyses of pediatric isolates of Cryptococcus neoformans from South Africa.(J Clin Microbiol, 2011-01) Miglia, Kathleen J; Govender, Nelesh P; Rossouw, Jenny; Meiring, Susan; Mitchell, Thomas G; Group for Enteric, Respiratory and Meningeal Disease Surveillance in South AfricaCompared to the incidence in adults, cryptococcosis is inexplicably rare among children, even in sub-Saharan Africa, which has the highest prevalence of coinfection with HIV and Cryptococcus neoformans. To explore any mycological basis for this age-related difference in the incidence of cryptococcosis, we investigated isolates of C. neoformans recovered from pediatric and adult patients during a 2-year period in South Africa. From reports to the Group for Enteric, Respiratory, and Meningeal Disease Surveillance in South Africa (GERMS-SA), we reviewed all cases of cryptococcosis in 2005 and 2006. We analyzed one isolate of C. neoformans from each of 82 pediatric patients (<15 years of age) and determined the multilocus sequence type (ST), mating type, ploidy, and allelic profile. This sample included isolates of all three molecular types of serotype A or C. neoformans var. grubii (molecular types VNI, VNII, and VNB) and one AD hybrid. Seventy-seven (94%) of the strains possessed the MATα mating type allele, and five were MATa. Seventy-five (91%) were haploid, and seven were diploid. A total of 24 different STs were identified. The ratios of each mating type and the proportion of haploids were comparable to those for the isolates that were obtained from 86 adult patients during the same period. Notably, the most prevalent pediatric ST was significantly associated with male patients. Overall, these pediatric isolates exhibited high genotypic diversity. They included a relatively large percentage of diploids and the rarely reported MATa mating type.Item Open Access Ancestral population genomics: the coalescent hidden Markov model approach.(Genetics, 2009-09) Dutheil, Julien Y; Ganapathy, Ganesh; Hobolth, Asger; Mailund, Thomas; Uyenoyama, Marcy K; Schierup, Mikkel HWith incomplete lineage sorting (ILS), the genealogy of closely related species differs along their genomes. The amount of ILS depends on population parameters such as the ancestral effective population sizes and the recombination rate, but also on the number of generations between speciation events. We use a hidden Markov model parameterized according to coalescent theory to infer the genealogy along a four-species genome alignment of closely related species and estimate population parameters. We analyze a basic, panmictic demographic model and study its properties using an extensive set of coalescent simulations. We assess the effect of the model assumptions and demonstrate that the Markov property provides a good approximation to the ancestral recombination graph. Using a too restricted set of possible genealogies, necessary to reduce the computational load, can bias parameter estimates. We propose a simple correction for this bias and suggest directions for future extensions of the model. We show that the patterns of ILS along a sequence alignment can be recovered efficiently together with the ancestral recombination rate. Finally, we introduce an extension of the basic model that allows for mutation rate heterogeneity and reanalyze human-chimpanzee-gorilla-orangutan alignments, using the new models. We expect that this framework will prove useful for population genomics and provide exciting insights into genome evolution.Item Open Access apex: phylogenetics with multiple genes.(Mol Ecol Resour, 2017-01) Jombart, Thibaut; Archer, Frederick; Schliep, Klaus; Kamvar, Zhian; Harris, Rebecca; Paradis, Emmanuel; Goudet, Jérome; Lapp, HilmarGenetic sequences of multiple genes are becoming increasingly common for a wide range of organisms including viruses, bacteria and eukaryotes. While such data may sometimes be treated as a single locus, in practice, a number of biological and statistical phenomena can lead to phylogenetic incongruence. In such cases, different loci should, at least as a preliminary step, be examined and analysed separately. The r software has become a popular platform for phylogenetics, with several packages implementing distance-based, parsimony and likelihood-based phylogenetic reconstruction, and an even greater number of packages implementing phylogenetic comparative methods. Unfortunately, basic data structures and tools for analysing multiple genes have so far been lacking, thereby limiting potential for investigating phylogenetic incongruence. In this study, we introduce the new r package apex to fill this gap. apex implements new object classes, which extend existing standards for storing DNA and amino acid sequences, and provides a number of convenient tools for handling, visualizing and analysing these data. In this study, we introduce the main features of the package and illustrate its functionalities through the analysis of a simple data set.Item Open Access APOL1-G0 protects podocytes in a mouse model of HIV-associated nephropathy.(PloS one, 2019-01) Bruggeman, Leslie A; Wu, Zhenzhen; Luo, Liping; Madhavan, Sethu; Drawz, Paul E; Thomas, David B; Barisoni, Laura; O'Toole, John F; Sedor, John RAfrican polymorphisms in the gene for Apolipoprotein L1 (APOL1) confer a survival advantage against lethal trypanosomiasis but also an increased risk for several chronic kidney diseases (CKD) including HIV-associated nephropathy (HIVAN). APOL1 is expressed in renal cells, however, the pathogenic events that lead to renal cell damage and kidney disease are not fully understood. The podocyte function of APOL1-G0 versus APOL1-G2 in the setting of a known disease stressor was assessed using transgenic mouse models. Transgene expression, survival, renal pathology and function, and podocyte density were assessed in an intercross of a mouse model of HIVAN (Tg26) with two mouse models that express either APOL1-G0 or APOL1-G2 in podocytes. Mice that expressed HIV genes developed heavy proteinuria and glomerulosclerosis, and had significant losses in podocyte numbers and reductions in podocyte densities. Mice that co-expressed APOL1-G0 and HIV had preserved podocyte numbers and densities, with fewer morphologic manifestations typical of HIVAN pathology. Podocyte losses and pathology in mice co-expressing APOL1-G2 and HIV were not significantly different from mice expressing only HIV. Podocyte hypertrophy, a known compensatory event to stress, was increased in the mice co-expressing HIV and APOL1-G0, but absent in the mice co-expressing HIV and APOL1-G2. Mortality and renal function tests were not significantly different between groups. APOL1-G0 expressed in podocytes may have a protective function against podocyte loss or injury when exposed to an environmental stressor. This was absent with APOL1-G2 expression, suggesting APOL1-G2 may have lost this protective function.Item Open Access APOL1-mediated monovalent cation transport contributes to APOL1-mediated podocytopathy in kidney disease.(The Journal of clinical investigation, 2024-01) Datta, Somenath; Antonio, Brett M; Zahler, Nathan H; Theile, Jonathan W; Krafte, Doug; Zhang, Hengtao; Rosenberg, Paul B; Chaves, Alec B; Muoio, Deborah M; Zhang, Guofang; Silas, Daniel; Li, Guojie; Soldano, Karen; Nystrom, Sarah; Ferreira, Davis; Miller, Sara E; Bain, James R; Muehlbauer, Michael J; Ilkayeva, Olga; Becker, Thomas C; Hohmeier, Hans-Ewald; Newgard, Christopher B; Olabisi, Opeyemi ATwo coding variants of apolipoprotein L1 (APOL1), called G1 and G2, explain much of the excess risk of kidney disease in African Americans. While various cytotoxic phenotypes have been reported in experimental models, the proximal mechanism by which G1 and G2 cause kidney disease is poorly understood. Here, we leveraged 3 experimental models and a recently reported small molecule blocker of APOL1 protein, VX-147, to identify the upstream mechanism of G1-induced cytotoxicity. In HEK293 cells, we demonstrated that G1-mediated Na+ import/K+ efflux triggered activation of GPCR/IP3-mediated calcium release from the ER, impaired mitochondrial ATP production, and impaired translation, which were all reversed by VX-147. In human urine-derived podocyte-like epithelial cells (HUPECs), we demonstrated that G1 caused cytotoxicity that was again reversible by VX-147. Finally, in podocytes isolated from APOL1 G1 transgenic mice, we showed that IFN-γ-mediated induction of G1 caused K+ efflux, activation of GPCR/IP3 signaling, and inhibition of translation, podocyte injury, and proteinuria, all reversed by VX-147. Together, these results establish APOL1-mediated Na+/K+ transport as the proximal driver of APOL1-mediated kidney disease.Item Open Access Are the native giant tortoises from the Seychelles really extinct? A genetic perspective based on mtDNA and microsatellite data.(Mol Ecol, 2003-06) Palkovacs, EP; Marschner, M; Ciofi, C; Gerlach, J; Caccone, AThe extinction of the giant tortoises of the Seychelles Archipelago has long been suspected but is not beyond doubt. A recent morphological study of the giant tortoises of the western Indian Ocean concluded that specimens of two native Seychelles species survive in captivity today alongside giant tortoises of Aldabra, which are numerous in zoos as well as in the wild. This claim has been controversial because some of the morphological characters used to identify these species, several measures of carapace morphology, are reputed to be quite sensitive to captive conditions. Nonetheless, the potential survival of giant tortoise species previously thought extinct presents an exciting scenario for conservation. We used mitochondrial DNA sequences and nuclear microsatellites to examine the validity of the rediscovered species of Seychelles giant tortoises. Our results indicate that the morphotypes suspected to represent Seychelles species do not show levels of variation and genetic structuring consistent with long periods of reproductive isolation. We found no variation in the mitochondrial control region among 55 individuals examined and no genetic structuring in eight microsatellite loci, pointing to the survival of just a single lineage of Indian Ocean tortoises.Item Open Access Association of tumor necrosis factor-alpha promoter variants with risk of HPV-associated oral squamous cell carcinoma.(Molecular cancer, 2013-07-19) Jin, Lei; Sturgis, Erich M; Zhang, Yang; Huang, Zhigang; Song, Xicheng; Li, Chao; Wei, Qingyi; Li, GuojunTumor necrosis factor alpha (TNF-α) plays an important role in inflammation, immunity, and defense against infection and clearance of human papillomavirus (HPV). Thus, genetic variants may modulate individual susceptibility to HPV-associated oral squamous cell carcinoma (OSCC).In this study we genotyped four common single nucleotide polymorphisms (SNPs) in the TNF-α promoter [ -308G > A(rs1800629), -857C > T (rs1799724), -863C > A (rs1800630), and -1031T > C (rs1799964)] and determined HPV16 serology in 325 OSCC cases and 335 matched controls and tumor HPV status in 176 squamous cell carcinomas of the oropharynx (SCCOP) patients. Univariate and multivariable logistic regression models were used to calculate odds ratios (ORs) and 95% confidence intervals (CIs).We found that HPV16 seropositivity alone was associated with an increased risk of OSCC (OR, 3.1; 95% CI, 2.1-4.6), and such risk of HPV16-associated OSCC was modified by each SNP. Patients with both HPV16 seropositivity and variant genotypes for each SNP had the highest risk when using patients with HPV16 seronegativity and a wild-type genotype as a comparison group. Moreover, similar results were observed for the combined risk genotypes of four variants and all such significant associations were more pronounced in several subgroups, particularly in SCCOP patients and never smokers. Notably, the combined risk genotypes of four variants were also significantly associated with tumor HPV-positive SCCOP.Taken together, these results suggest that TNF-α SNPs may individually or, more likely, jointly affect individual susceptibility to HPV16-associated OSCC, particularly SCCOP and never smokers. Validation of our findings is warranted.Item Open Access Can Genetics Predict Response to Complex Behavioral Interventions? Evidence from a Genetic Analysis of the Fast Track Randomized Control Trial.(J Policy Anal Manage, 2015) Albert, Dustin; Belsky, Daniel W; Crowley, D Max; Latendresse, Shawn J; Aliev, Fazil; Riley, Brien; Group, Conduct Problems Prevention Research; Dick, Danielle M; Dodge, Kenneth AEarly interventions are a preferred method for addressing behavioral problems in high-risk children, but often have only modest effects. Identifying sources of variation in intervention effects can suggest means to improve efficiency. One potential source of such variation is the genome. We conducted a genetic analysis of the Fast Track randomized control trial, a 10-year-long intervention to prevent high-risk kindergarteners from developing adult externalizing problems including substance abuse and antisocial behavior. We tested whether variants of the glucocorticoid receptor gene NR3C1 were associated with differences in response to the Fast Track intervention. We found that in European-American children, a variant of NR3C1 identified by the single-nucleotide polymorphism rs10482672 was associated with increased risk for externalizing psychopathology in control group children and decreased risk for externalizing psychopathology in intervention group children. Variation in NR3C1 measured in this study was not associated with differential intervention response in African-American children. We discuss implications for efforts to prevent externalizing problems in high-risk children and for public policy in the genomic era.Item Open Access Captivity humanizes the primate microbiome.(Proc Natl Acad Sci U S A, 2018-03-01) Clayton, Jonathan B; Vangay, Pajau; Huang, Hu; Ward, Tonya; Hillmann, Benjamin M; Al-Ghalith, Gabriel A; Travis, Dominic A; Long, Ha Thang; Tuan, Bui Van; Minh, Vo Van; Cabana, Francis; Nadler, Tilo; Toddes, Barbara; Murphy, Tami; Glander, Kenneth E; Johnson, Timothy J; Knights, DanThe primate gastrointestinal tract is home to trillions of bacteria, whose composition is associated with numerous metabolic, autoimmune, and infectious human diseases. Although there is increasing evidence that modern and Westernized societies are associated with dramatic loss of natural human gut microbiome diversity, the causes and consequences of such loss are challenging to study. Here we use nonhuman primates (NHPs) as a model system for studying the effects of emigration and lifestyle disruption on the human gut microbiome. Using 16S rRNA gene sequencing in two model NHP species, we show that although different primate species have distinctive signature microbiota in the wild, in captivity they lose their native microbes and become colonized with Prevotella and Bacteroides, the dominant genera in the modern human gut microbiome. We confirm that captive individuals from eight other NHP species in a different zoo show the same pattern of convergence, and that semicaptive primates housed in a sanctuary represent an intermediate microbiome state between wild and captive. Using deep shotgun sequencing, chemical dietary analysis, and chloroplast relative abundance, we show that decreasing dietary fiber and plant content are associated with the captive primate microbiome. Finally, in a meta-analysis including published human data, we show that captivity has a parallel effect on the NHP gut microbiome to that of Westernization in humans. These results demonstrate that captivity and lifestyle disruption cause primates to lose native microbiota and converge along an axis toward the modern human microbiome.Item Open Access Common genetic variation and the control of HIV-1 in humans.(PLoS Genet, 2009-12) Fellay, Jacques; Ge, Dongliang; Shianna, Kevin V; Colombo, Sara; Ledergerber, Bruno; Cirulli, Elizabeth T; Urban, Thomas J; Zhang, Kunlin; Gumbs, Curtis E; Smith, Jason P; Castagna, Antonella; Cozzi-Lepri, Alessandro; De Luca, Andrea; Easterbrook, Philippa; Günthard, Huldrych F; Mallal, Simon; Mussini, Cristina; Dalmau, Judith; Martinez-Picado, Javier; Miro, José M; Obel, Niels; Wolinsky, Steven M; Martinson, Jeremy J; Detels, Roger; Margolick, Joseph B; Jacobson, Lisa P; Descombes, Patrick; Antonarakis, Stylianos E; Beckmann, Jacques S; O'Brien, Stephen J; Letvin, Norman L; McMichael, Andrew J; Haynes, Barton F; Carrington, Mary; Feng, Sheng; Telenti, Amalio; Goldstein, David B; NIAID Center for HIV/AIDS Vaccine Immunology (CHAVI)To extend the understanding of host genetic determinants of HIV-1 control, we performed a genome-wide association study in a cohort of 2,554 infected Caucasian subjects. The study was powered to detect common genetic variants explaining down to 1.3% of the variability in viral load at set point. We provide overwhelming confirmation of three associations previously reported in a genome-wide study and show further independent effects of both common and rare variants in the Major Histocompatibility Complex region (MHC). We also examined the polymorphisms reported in previous candidate gene studies and fail to support a role for any variant outside of the MHC or the chemokine receptor cluster on chromosome 3. In addition, we evaluated functional variants, copy-number polymorphisms, epistatic interactions, and biological pathways. This study thus represents a comprehensive assessment of common human genetic variation in HIV-1 control in Caucasians.Item Open Access Comparative analyses of clinical and environmental populations of Cryptococcus neoformans in Botswana.(Mol Ecol, 2015-07) Chen, Yuan; Litvintseva, Anastasia P; Frazzitta, Aubrey E; Haverkamp, Miriam R; Wang, Liuyang; Fang, Charles; Muthoga, Charles; Mitchell, Thomas G; Perfect, John RCryptococcus neoformans var. grubii (Cng) is the most common cause of fungal meningitis, and its prevalence is highest in sub-Saharan Africa. Patients become infected by inhaling airborne spores or desiccated yeast cells from the environment, where the fungus thrives in avian droppings, trees and soil. To investigate the prevalence and population structure of Cng in southern Africa, we analysed isolates from 77 environmental samples and 64 patients. We detected significant genetic diversity among isolates and strong evidence of geographic structure at the local level. High proportions of isolates with the rare MATa allele were observed in both clinical and environmental isolates; however, the mating-type alleles were unevenly distributed among different subpopulations. Nearly equal proportions of the MATa and MATα mating types were observed among all clinical isolates and in one environmental subpopulation from the eastern part of Botswana. As previously reported, there was evidence of both clonality and recombination in different geographic areas. These results provide a foundation for subsequent genomewide association studies to identify genes and genotypes linked to pathogenicity in humans.