Browsing by Subject "Genome, Fungal"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Open Access Analysis of the genome and transcriptome of Cryptococcus neoformans var. grubii reveals complex RNA expression and microevolution leading to virulence attenuation.(PLoS Genet, 2014-04) Janbon, G; Ormerod, KL; Paulet, D; Byrnes, EJ; Yadav, V; Chatterjee, G; Mullapudi, N; Hon, C; Billmyre, RB; Brunel, F; Bahn, Y; Chen, W; Chen, Y; Chow, EWL; Coppée, J; Floyd-Averette, A; Gaillardin, C; Gerik, KJ; Goldberg, J; Gonzalez-Hilarion, S; Gujja, S; Hamlin, JL; Hsueh, Y; Ianiri, G; Jones, S; Kodira, CD; Kozubowski, L; Lam, W; Marra, M; Mesner, LD; Mieczkowski, PA; Moyrand, F; Nielsen, K; Proux, C; Rossignol, T; Schein, JE; Sun, S; Wollschlaeger, C; Wood, IA; Zeng, Q; Neuvéglise, C; Newlon, CS; Perfect, JR; Lodge, JK; Idnurm, A; Stajich, JE; Kronstad, JW; Sanyal, K; Heitman, J; Fraser, JA; Cuomo, CA; Dietrich, FSCryptococcus neoformans is a pathogenic basidiomycetous yeast responsible for more than 600,000 deaths each year. It occurs as two serotypes (A and D) representing two varieties (i.e. grubii and neoformans, respectively). Here, we sequenced the genome and performed an RNA-Seq-based analysis of the C. neoformans var. grubii transcriptome structure. We determined the chromosomal locations, analyzed the sequence/structural features of the centromeres, and identified origins of replication. The genome was annotated based on automated and manual curation. More than 40,000 introns populating more than 99% of the expressed genes were identified. Although most of these introns are located in the coding DNA sequences (CDS), over 2,000 introns in the untranslated regions (UTRs) were also identified. Poly(A)-containing reads were employed to locate the polyadenylation sites of more than 80% of the genes. Examination of the sequences around these sites revealed a new poly(A)-site-associated motif (AUGHAH). In addition, 1,197 miscRNAs were identified. These miscRNAs can be spliced and/or polyadenylated, but do not appear to have obvious coding capacities. Finally, this genome sequence enabled a comparative analysis of strain H99 variants obtained after laboratory passage. The spectrum of mutations identified provides insights into the genetics underlying the micro-evolution of a laboratory strain, and identifies mutations involved in stress responses, mating efficiency, and virulence.Item Open Access Conservation, duplication, and loss of the Tor signaling pathway in the fungal kingdom.(BMC Genomics, 2010-09-23) Shertz, Cecelia A; Bastidas, Robert J; Li, Wenjun; Heitman, Joseph; Cardenas, Maria EBACKGROUND: The nutrient-sensing Tor pathway governs cell growth and is conserved in nearly all eukaryotic organisms from unicellular yeasts to multicellular organisms, including humans. Tor is the target of the immunosuppressive drug rapamycin, which in complex with the prolyl isomerase FKBP12 inhibits Tor functions. Rapamycin is a gold standard drug for organ transplant recipients that was approved by the FDA in 1999 and is finding additional clinical indications as a chemotherapeutic and antiproliferative agent. Capitalizing on the plethora of recently sequenced genomes we have conducted comparative genomic studies to annotate the Tor pathway throughout the fungal kingdom and related unicellular opisthokonts, including Monosiga brevicollis, Salpingoeca rosetta, and Capsaspora owczarzaki. RESULTS: Interestingly, the Tor signaling cascade is absent in three microsporidian species with available genome sequences, the only known instance of a eukaryotic group lacking this conserved pathway. The microsporidia are obligate intracellular pathogens with highly reduced genomes, and we hypothesize that they lost the Tor pathway as they adapted and streamlined their genomes for intracellular growth in a nutrient-rich environment. Two TOR paralogs are present in several fungal species as a result of either a whole genome duplication or independent gene/segmental duplication events. One such event was identified in the amphibian pathogen Batrachochytrium dendrobatidis, a chytrid responsible for worldwide global amphibian declines and extinctions. CONCLUSIONS: The repeated independent duplications of the TOR gene in the fungal kingdom might reflect selective pressure acting upon this kinase that populates two proteinaceous complexes with different cellular roles. These comparative genomic analyses illustrate the evolutionary trajectory of a central nutrient-sensing cascade that enables diverse eukaryotic organisms to respond to their natural environments.Item Restricted Evolution of the sex-related locus and genomic features shared in microsporidia and fungi.(PLoS One, 2010-05-07) Lee, Soo Chan; Corradi, Nicolas; Doan, Sylvia; Dietrich, Fred S; Keeling, Patrick J; Heitman, JosephBACKGROUND: Microsporidia are obligate intracellular, eukaryotic pathogens that infect a wide range of animals from nematodes to humans, and in some cases, protists. The preponderance of evidence as to the origin of the microsporidia reveals a close relationship with the fungi, either within the kingdom or as a sister group to it. Recent phylogenetic studies and gene order analysis suggest that microsporidia share a particularly close evolutionary relationship with the zygomycetes. METHODOLOGY/PRINCIPAL FINDINGS: Here we expanded this analysis and also examined a putative sex-locus for variability between microsporidian populations. Whole genome inspection reveals a unique syntenic gene pair (RPS9-RPL21) present in the vast majority of fungi and the microsporidians but not in other eukaryotic lineages. Two other unique gene fusions (glutamyl-prolyl tRNA synthetase and ubiquitin-ribosomal subunit S30) that are present in metazoans, choanoflagellates, and filasterean opisthokonts are unfused in the fungi and microsporidians. One locus previously found to be conserved in many microsporidian genomes is similar to the sex locus of zygomycetes in gene order and architecture. Both sex-related and sex loci harbor TPT, HMG, and RNA helicase genes forming a syntenic gene cluster. We sequenced and analyzed the sex-related locus in 11 different Encephalitozoon cuniculi isolates and the sibling species E. intestinalis (3 isolates) and E. hellem (1 isolate). There was no evidence for an idiomorphic sex-related locus in this Encephalitozoon species sample. According to sequence-based phylogenetic analyses, the TPT and RNA helicase genes flanking the HMG genes are paralogous rather than orthologous between zygomycetes and microsporidians. CONCLUSION/SIGNIFICANCE: The unique genomic hallmarks between microsporidia and fungi are independent of sequence based phylogenetic comparisons and further contribute to define the borders of the fungal kingdom and support the classification of microsporidia as unusual derived fungi. And the sex/sex-related loci appear to have been subject to frequent gene conversion and translocations in microsporidia and zygomycetes.Item Open Access Gene Network Polymorphism Illuminates Loss and Retention of Novel RNAi Silencing Components in the Cryptococcus Pathogenic Species Complex.(PLoS Genet, 2016-03) Feretzaki, M; Billmyre, RB; Clancey, SA; Wang, X; Heitman, JRNAi is a ubiquitous pathway that serves central functions throughout eukaryotes, including maintenance of genome stability and repression of transposon expression and movement. However, a number of organisms have lost their RNAi pathways, including the model yeast Saccharomyces cerevisiae, the maize pathogen Ustilago maydis, the human pathogen Cryptococcus deuterogattii, and some human parasite pathogens, suggesting there may be adaptive benefits associated with both retention and loss of RNAi. By comparing the RNAi-deficient genome of the Pacific Northwest Outbreak C. deuterogattii strain R265 with the RNAi-proficient genomes of the Cryptococcus pathogenic species complex, we identified a set of conserved genes that were lost in R265 and all other C. deuterogattii isolates examined. Genetic and molecular analyses reveal several of these lost genes play roles in RNAi pathways. Four novel components were examined further. Znf3 (a zinc finger protein) and Qip1 (a homolog of N. crassa Qip) were found to be essential for RNAi, while Cpr2 (a constitutive pheromone receptor) and Fzc28 (a transcription factor) are involved in sex-induced but not mitosis-induced silencing. Our results demonstrate that the mitotic and sex-induced RNAi pathways rely on the same core components, but sex-induced silencing may be a more specific, highly induced variant that involves additional specialized or regulatory components. Our studies further illustrate how gene network polymorphisms involving known components of key cellular pathways can inform identification of novel elements and suggest that RNAi loss may have been a core event in the speciation of C. deuterogattii and possibly contributed to its pathogenic trajectory.Item Open Access The prevalence and regulation of antisense transcripts in Schizosaccharomyces pombe.(PLoS One, 2010-12-20) Ni, Ting; Tu, Kang; Wang, Zhong; Song, Shen; Wu, Han; Xie, Bin; Scott, Kristin C; Grewal, Shiv I; Gao, Yuan; Zhu, JunA strand-specific transcriptome sequencing strategy, directional ligation sequencing or DeLi-seq, was employed to profile antisense transcriptome of Schizosaccharomyces pombe. Under both normal and heat shock conditions, we found that polyadenylated antisense transcripts are broadly expressed while distinct expression patterns were observed for protein-coding and non-coding loci. Dominant antisense expression is enriched in protein-coding genes involved in meiosis or stress response pathways. Detailed analyses further suggest that antisense transcripts are independently regulated with respect to their sense transcripts, and diverse mechanisms might be potentially involved in the biogenesis and degradation of antisense RNAs. Taken together, antisense transcription may have profound impacts on global gene regulation in S. pombe.Item Open Access Uncoupling of genomic and epigenetic signals in the maintenance and inheritance of heterochromatin domains in fission yeast.(Genetics, 2012-02) Wheeler, Bayly S; Ruderman, Brandon T; Willard, Huntington F; Scott, Kristin CMany essential aspects of genome function, including gene expression and chromosome segregation, are mediated throughout development and differentiation by changes in the chromatin state. Along with genomic signals encoded in the DNA, epigenetic processes regulate heritable gene expression patterns. Genomic signals such as enhancers, silencers, and repetitive DNA, while required for the establishment of alternative chromatin states, have an unclear role in epigenetic processes that underlie the persistence of chromatin states throughout development. Here, we demonstrate in fission yeast that the maintenance and inheritance of ectopic heterochromatin domains are independent of the genomic sequences necessary for their de novo establishment. We find that both structural heterochromatin and gene silencing can be stably maintained over an ~10-kb domain for up to hundreds of cell divisions in the absence of genomic sequences required for heterochromatin establishment, demonstrating the long-term persistence and stability of this chromatin state. The de novo heterochromatin, despite the absence of nucleation sequences, is also stably inherited through meiosis. Together, these studies provide evidence for chromatin-dependent, epigenetic control of gene silencing that is heritable, stable, and self-sustaining, even in the absence of the originating genomic signals.