Browsing by Subject "Germinal Center"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item Open Access Costimulation blockade alters germinal center responses and prevents antibody-mediated rejection.(Am J Transplant, 2014-01) Kim, EJ; Kwun, J; Gibby, AC; Hong, JJ; Farris III, AB; Iwakoshi, NN; Villinger, F; Kirk, AD; Knechtle, SJDe novo donor-specific antibody (DSA) after organ transplantation promotes antibody-mediated rejection (AMR) and causes late graft loss. Previously, we demonstrated that depletion using anti-CD3 immunotoxin combined with tacrolimus and alefacept (AMR regimen) reliably induced early DSA production with AMR in a nonhuman primate kidney transplant model. Five animals were assigned as positive AMR controls, four received additional belatacept and four received additional anti-CD40 mAb (2C10R4). Notably, production of early de novo DSA was completely attenuated with additional belatacept or 2C10R4 treatment. In accordance with this, while positive controls experienced a decrease in peripheral IgM(+) B cells, bela- and 2C10R4-added groups maintained a predominant population of IgM(+) B cells, potentially indicating decreased isotype switching. Central memory T cells (CD4(+) CD28(+) CD95(+)) as well as PD-1(hi) CD4(+) T cells were decreased in both bela-added and 2C10R4-added groups. In analyzing germinal center (GC) reactions in situ, lymph nodes further revealed a reduction of B cell clonal expansion, GC-follicular helper T (Tfh) cells, and IL-21 production inside GCs with additional belatacept or 2C10R4 treatment. Here we provide evidence that belatacept and 2C10R4 selectively suppresses the humoral response via regulating Tfh cells and prevents AMR in this nonhuman primate model.Item Open Access Germinal center entry not selection of B cells is controlled by peptide-MHCII complex density.(Nature communications, 2018-03-02) Yeh, Chen-Hao; Nojima, Takuya; Kuraoka, Masayuki; Kelsoe, GarnettB cells expressing high affinity antigen receptors are advantaged in germinal centers (GC), perhaps by increased acquisition of antigen for presentation to follicular helper T cells and improved T-cell help. In this model for affinity-dependent selection, the density of peptide/MHCII (pMHCII) complexes on GC B cells is the primary determinant of selection. Here we show in chimeric mice populated by B cells differing only in their capacity to express MHCII (MHCII+/+ and MHCII+/-) that GC selection is insensitive to halving pMHCII density. Alone, both B cell types generate identical humoral responses; in competition, MHCII+/+ B cells are preferentially recruited to early GCs but this advantage does not persist once GCs are established. During GC responses, competing MHCII+/+ and MHCII+/- GC B cells comparably accumulate mutations and have indistinguishable rates of affinity maturation. We conclude that B-cell selection by pMHCII density is stringent in the establishment of GCs, but relaxed during GC responses.Item Open Access In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. IV. Affinity-dependent, antigen-driven B cell apoptosis in germinal centers as a mechanism for maintaining self-tolerance.(J Exp Med, 1995-12-01) Han, S; Zheng, B; Dal Porto, J; Kelsoe, GGerminal centers (GCs) are the sites of antigen-driven V(D)J gene hypermutation and selection necessary for the generation of high affinity memory B lymphocytes. Despite the antigen dependence of this reaction, injection of soluble antigen during an established primary immune response induces massive apoptotic death in GC B cells, but not in clonally related populations of nonfollicular B lymphoblasts and plasmacytes. Cell death in GCs occurs predominantly among light zone centrocytes, is antigen specific, and peaks within 4-8 h after injection. Antigen-induced programmed death does not involve cellular interactions mediated by CD40 ligand (CD40L) or Fas; disruption of GCs by antibody specific for CD40L was not driven by apoptosis and C57BL/6.lpr mice, though unable to express the Fas death trigger, remained fully susceptible to soluble antigen. Single injections of antigen did not significantly decrease GC numbers or average size, but repeated injections during an 18-h period resulted in fewer and substantially smaller GCs. As cell loss appeared most extensive in the light zone, decreased GC cellularity after prolonged exposure to soluble antigen implies that the Ig- centroblasts of the dark zone may require replenishment from light zone cells that have survived antigenic selection. GC cell death is avidity-dependent; oligovalent antigen induced relatively little apoptosis and GC B cells that survived long exposures to multivalent antigen expressed atypical VDJ rearrangements unlikely to encode high affinity antibody. Antigen-induced apoptotic death in GCs may represent a mechanism for the peripheral deletion of autoreactive B cell mutants much as the combinatorial repertoire of immature B lymphocytes is censored in the bone marrow.Item Open Access In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. V. Affinity maturation develops in two stages of clonal selection.(J Exp Med, 1998-03-16) Takahashi, Y; Dutta, PR; Cerasoli, DM; Kelsoe, GTo examine the role of germinal centers (GCs) in the generation and selection of high affinity antibody-forming cells (AFCs), we have analyzed the average affinity of (4-hydroxy-3-nitrophenyl)acetyl (NP)-specific AFCs and serum antibodies both during and after the GC phase of the immune response. In addition, the genetics of NP-binding AFCs were followed to monitor the generation and selection of high affinity AFCs at the clonal level. NP-binding AFCs gradually accumulate in bone marrow (BM) after immunization and BM becomes the predominant locale of specific AFCs in the late primary response. Although the average affinity of NP-specific BM AFCs rapidly increased while GCs were present (GC phase), the affinity of both BM AFCs and serum antibodies continued to increase even after GCs waned (post-GC phase). Affinity maturation in the post-GC phase was also reflected in a shift in the distribution of somatic mutations as well as in the CDR3 sequences of BM AFC antibody heavy chain genes. Disruption of GCs by injection of antibody specific for CD154 (CD40 ligand) decreased the average affinity of subsequent BM AFCs, suggesting that GCs generate the precursors of high affinity BM AFCs; inhibition of CD154-dependent cellular interactions after the GC reaction was complete had no effect on high affinity BM AFCs. Interestingly, limited affinity maturation in the BM AFC compartment still occurs during the late primary response even after treatment with anti-CD154 antibody. Thus, GCs are necessary for the generation of high affinity AFC precursors but are not the only sites for the affinity-driven clonal selection responsible for the maturation of humoral immune responses.Item Open Access Polyclonal B cell differentiation and loss of gastrointestinal tract germinal centers in the earliest stages of HIV-1 infection.(PLoS Med, 2009-07-07) Levesque, Marc C; Moody, M Anthony; Hwang, Kwan-Ki; Marshall, Dawn J; Whitesides, John F; Amos, Joshua D; Gurley, Thaddeus C; Allgood, Sallie; Haynes, Benjamin B; Vandergrift, Nathan A; Plonk, Steven; Parker, Daniel C; Cohen, Myron S; Tomaras, Georgia D; Goepfert, Paul A; Shaw, George M; Schmitz, Jörn E; Eron, Joseph J; Shaheen, Nicholas J; Hicks, Charles B; Liao, Hua-Xin; Markowitz, Martin; Kelsoe, Garnett; Margolis, David M; Haynes, Barton FBACKGROUND: The antibody response to HIV-1 does not appear in the plasma until approximately 2-5 weeks after transmission, and neutralizing antibodies to autologous HIV-1 generally do not become detectable until 12 weeks or more after transmission. Moreover, levels of HIV-1-specific antibodies decline on antiretroviral treatment. The mechanisms of this delay in the appearance of anti-HIV-1 antibodies and of their subsequent rapid decline are not known. While the effect of HIV-1 on depletion of gut CD4(+) T cells in acute HIV-1 infection is well described, we studied blood and tissue B cells soon after infection to determine the effect of early HIV-1 on these cells. METHODS AND FINDINGS: In human participants, we analyzed B cells in blood as early as 17 days after HIV-1 infection, and in terminal ileum inductive and effector microenvironments beginning at 47 days after infection. We found that HIV-1 infection rapidly induced polyclonal activation and terminal differentiation of B cells in blood and in gut-associated lymphoid tissue (GALT) B cells. The specificities of antibodies produced by GALT memory B cells in acute HIV-1 infection (AHI) included not only HIV-1-specific antibodies, but also influenza-specific and autoreactive antibodies, indicating very early onset of HIV-1-induced polyclonal B cell activation. Follicular damage or germinal center loss in terminal ileum Peyer's patches was seen with 88% of follicles exhibiting B or T cell apoptosis and follicular lysis. CONCLUSIONS: Early induction of polyclonal B cell differentiation, coupled with follicular damage and germinal center loss soon after HIV-1 infection, may explain both the high rate of decline in HIV-1-induced antibody responses and the delay in plasma antibody responses to HIV-1. Please see later in the article for Editors' Summary.Item Open Access Relaxed negative selection in germinal centers and impaired affinity maturation in bcl-xL transgenic mice.(J Exp Med, 1999-08-02) Takahashi, Y; Cerasoli, DM; Dal Porto, JM; Shimoda, M; Freund, R; Fang, W; Telander, DG; Malvey, EN; Mueller, DL; Behrens, TW; Kelsoe, GThe role of apoptosis in affinity maturation was investigated by determining the affinity of (4-hydroxy-3-nitrophenyl)acetyl (NP)-specific antibody-forming cells (AFCs) and serum antibody in transgenic mice that overexpress a suppressor of apoptosis, Bcl-xL, in the B cell compartment. Although transgenic animals briefly expressed higher numbers of splenic AFCs after immunization, the bcl-xL transgene did not increase the number or size of germinal centers (GCs), alter the levels of serum antibody, or change the frequency of NP-specific, long-lived AFCs. Nonetheless, the bcl-xL transgene product, in addition to endogenous Bcl-xL, reduced apoptosis in GC B cells and resulted in the expansion of B lymphocytes bearing VDJ rearrangements that are usually rare in primary anti-NP responses. Long-lived AFCs bearing these noncanonical rearrangements were frequent in the bone marrow and secreted immunoglobulin G(1) antibodies with low affinity for NP. The abundance of noncanonical cells lowered the average affinity of long-lived AFCs and serum antibody, demonstrating that Bcl-xL and apoptosis influence clonal selection/maintenance for affinity maturation.Item Open Access T helper cells in murine germinal centers are antigen-specific emigrants that downregulate Thy-1.(J Exp Med, 1996-09-01) Zheng, B; Han, S; Kelsoe, GAfter immunization, activated splenic T cells proliferate in periarteriolar lymphoid sheaths (PALS) and subsequently migrate to the lymphoid follicle where they enter nascent germinal centers. Analysis of TCR V(D)J gene rearrangements indicates extensive emigration, frequently involving more than a single white pulp region. These migrants constitute a unique set of T helper cells that express antigen-specific alpha beta TCR, CD3, and CD4, but little or no Thy-1, a differentiation antigen present on the great majority of peripheral murine T lymphocytes. The origin of CD4+ Thy-1 follicular T cells appears to be the Thy+ population in the PALS, as both sets commonly share identical V(D)J rearrangements.Item Open Access TSC1 Promotes B Cell Maturation but Is Dispensable for Germinal Center Formation.(PLoS One, 2015) Ci, Xinxin; Kuraoka, Masayuki; Wang, Hongxia; Carico, Zachary; Hopper, Kristen; Shin, Jinwook; Deng, Xuming; Qiu, Yirong; Unniraman, Shyam; Kelsoe, Garnett; Zhong, Xiao-PingAccumulating evidence indicates that the tuberous sclerosis complex 1 (TSC1), a tumor suppressor that acts by inhibiting mTOR signaling, plays an important role in the immune system. We report here that TSC1 differentially regulates mTOR complex 1 (mTORC1) and mTORC2/Akt signaling in B cells. TSC1 deficiency results in the accumulation of transitional-1 (T1) B cells and progressive losses of B cells as they mature beyond the T1 stage. Moreover, TSC1KO mice exhibit a mild defect in the serum antibody responses or rate of Ig class-switch recombination after immunization with a T-cell-dependent antigen. In contrast to a previous report, we demonstrate that both constitutive Peyer's patch germinal centers (GCs) and immunization-induced splenic GCs are unimpaired in TSC1-deficient (TSC1KO) mice and that the ratio of GC B cells to total B cells is comparable in WT and TSC1KO mice. Together, our data demonstrate that TSC1 plays important roles for B cell development, but it is dispensable for GC formation and serum antibody responses.