Browsing by Subject "Glycogen Storage Disease Type I"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Open Access Hepatic mitochondrial dysfunction is a feature of Glycogen Storage Disease Type Ia (GSDIa).(Scientific reports, 2017-03) Farah, Benjamin L; Sinha, Rohit A; Wu, Yajun; Singh, Brijesh K; Lim, Andrea; Hirayama, Masahiro; Landau, Dustin J; Bay, Boon Huat; Koeberl, Dwight D; Yen, Paul MGlycogen storage disease type Ia (GSDIa, von Gierke disease) is the most common glycogen storage disorder. It is caused by the deficiency of glucose-6-phosphatase, an enzyme which catalyses the final step of gluconeogenesis and glycogenolysis. Clinically, GSDIa is characterized by fasting hypoglycaemia and hepatic glycogen and triglyceride overaccumulation. The latter leads to steatohepatitis, cirrhosis, and the formation of hepatic adenomas and carcinomas. Currently, little is known about the function of various organelles and their impact on metabolism in GSDIa. Accordingly, we investigated mitochondrial function in cell culture and mouse models of GSDIa. We found impairments in oxidative phosphorylation and changes in TCA cycle metabolites, as well as decreased mitochondrial membrane potential and deranged mitochondrial ultra-structure in these model systems. Mitochondrial content also was decreased, likely secondary to decreased mitochondrial biogenesis. These deleterious effects culminated in the activation of the mitochondrial apoptosis pathway. Taken together, our results demonstrate a role for mitochondrial dysfunction in the pathogenesis of GSDIa, and identify a new potential target for the treatment of this disease. They also provide new insight into the role of carbohydrate overload on mitochondrial function in other hepatic diseases, such as non-alcoholic fatty liver disease.Item Open Access Neutropenia in glycogen storage disease Ib: outcomes for patients treated with granulocyte colony-stimulating factor.(Current opinion in hematology, 2019-01) Dale, David C; Bolyard, Audrey Anna; Marrero, Tracy; Kelley, Merideth L; Makaryan, Vahagn; Tran, Emily; Leung, Jamie; Boxer, Laurence A; Kishnani, Priya S; Austin, Stephanie; Wanner, Corbinian; Ferrecchia, Iris A; Khalaf, Dina; Maze, Dawn; Kurtzberg, Joanne; Zeidler, Cornelia; Welte, Karl; Weinstein, David APurpose of review
Glycogen storage disease Ib (GSD Ib) is characterized by hepatomegaly, hypoglycemia, neutropenia, enterocolitis and recurrent bacterial infections. It is attributable to mutations in G6PT1, the gene for the glucose-6-phosphate transporter responsible for transport of glucose into the endoplasmic reticulum. Neutropenia in GSD Ib is now frequently treated with granulocyte colony-stimulating factor (G-CSF). We formed a cooperative group to review outcomes of the long-term treatment of GSD Ib patients treated with G-CSF.Recent findings
The study enrolled 103 patients (48 men and 55 women), including 47 currently adult patients. All of these patients were treated with G-CSF, starting at a median age of 3.8 years (range 0.04-33.9 years) with a median dose of 3.0 mcg/kg/day (range 0.01-93.1 mcg/kg/day) for a median of 10.3 years (range 0.01-29.3 years). Neutrophils increased in response to G-CSF in all patients (median values before G-CSF 0.2 × 10/l, on G-CSF 1.20 x 10/l). Treatment increased spleen size (before G-CSF, 47%, on treatment on G-CSF 76%), and splenomegaly was the dose-limiting adverse effect of treatment (pain and early satiety). Clinical observations and records attest to reduce frequency of infectious events and the severity of inflammatory bowel symptoms, but fever and recurrent infections remain a significant problem. In the cohort of patients followed carefully through the Severe Chronic Neutropenia International Registry, four patients have developed myelodysplasia or acute myeloid leukemia and we are aware of four other cases, (altogether seven on G-CSF, one never treated with G-CSF). Liver transplantation in five patients did not correct neutropenia. Four patients had hematopoietic stem cell transplantation; two adults and two children were transplanted; one adult and one child survived.Summary
GSD Ib is a complex disorder of glucose metabolism causing severe chronic neutropenia. G-CSF is effective to raise blood neutrophil counts and reduce fevers and infections in most patients. In conjunction with other therapies (salicylates, mesalamine sulfasalazine and prednisone), G-CSF ameliorates inflammatory bowel symptoms, but doses must be limited because it increases spleen size associated with abdominal pain.Item Open Access Oropharyngeal Dysphagia in Infants and Children with Infantile Pompe Disease.(Dysphagia, 2009-09) Jones, HN; Muller, CW; Lin, M; Banugaria, SG; Case, LE; Li, JS; O'Grady, G; Heller, JH; Kishnani, PSPompe disease is a rare genetic progressive neuromuscular disorder. The most severe form, infantile Pompe disease, has historically resulted in early mortality, most commonly due to cardiorespiratory failure. Treatment with enzyme replacement therapy (ERT) using alglucosidase alfa (Myozyme((R))) has extended the lifespan of individuals with this disease. With the introduction of ERT and the resultant improved survival, dysphagia is being encountered clinically with increasing regularity though systematic data remain unavailable. We retrospectively studied the oropharyngeal swallowing of 13 infants and children with Pompe disease using videofluoroscopy before initiation of ERT, allowing for baseline swallow function to be established in an untreated cohort. Dysphagia was present in all 13 subjects, even in a participant only 15 days old. Oral stage signs were present in 77%, most frequently a weak suck in 69%. Pharyngeal stage signs were present in 100%, including a pharyngeal swallow delay in 92% and pharyngeal residue in 77%. Airway invasion was present in 76.9% of subjects, including penetration in five (38.46%) and silent aspiration in an additional five (38.46%). No relationship in the relative involvement of swallowing, gross motor function, and cardiac disease appeared to be present.Item Open Access Pathogenesis of growth failure and partial reversal with gene therapy in murine and canine Glycogen Storage Disease type Ia.(Molecular Genetics and Metabolism, 2013-06) Brooks, Elizabeth Drake; Little, Dianne; Arumugam, Ramamani; Sun, Baodong; Curtis, Sarah; Demaster, Amanda; Maranzano, Michael; Jackson, Mark W; Kishnani, Priya; Freemark, Michael S; Koeberl, Dwight DGlycogen Storage Disease type Ia (GSD-Ia) in humans frequently causes delayed bone maturation, decrease in final adult height, and decreased growth velocity. This study evaluates the pathogenesis of growth failure and the effect of gene therapy on growth in GSD-Ia affected dogs and mice. Here we found that homozygous G6pase (-/-) mice with GSD-Ia have normal growth hormone (GH) levels in response to hypoglycemia, decreased insulin-like growth factor (IGF) 1 levels, and attenuated weight gain following administration of GH. Expression of hepatic GH receptor and IGF 1 mRNAs and hepatic STAT5 (phospho Y694) protein levels are reduced prior to and after GH administration, indicating GH resistance. However, restoration of G6Pase expression in the liver by treatment with adeno-associated virus 8 pseudotyped vector expressing G6Pase (AAV2/8-G6Pase) corrected body weight, but failed to normalize plasma IGF 1 in G6pase (-/-) mice. Untreated G6pase (-/-) mice also demonstrated severe delay of growth plate ossification at 12 days of age; those treated with AAV2/8-G6Pase at 14 days of age demonstrated skeletal dysplasia and limb shortening when analyzed radiographically at 6 months of age, in spite of apparent metabolic correction. Moreover, gene therapy with AAV2/9-G6Pase only partially corrected growth in GSD-Ia affected dogs as detected by weight and bone measurements and serum IGF 1 concentrations were persistently low in treated dogs. We also found that heterozygous GSD-Ia carrier dogs had decreased serum IGF 1, adult body weights and bone dimensions compared to wild-type littermates. In sum, these findings suggest that growth failure in GSD-Ia results, at least in part, from hepatic GH resistance. In addition, gene therapy improved growth in addition to promoting long-term survival in dogs and mice with GSD-Ia.Item Open Access Preclinical Development of New Therapy for Glycogen Storage Diseases.(Curr Gene Ther, 2015) Sun, Baodong; Brooks, Elizabeth D; Koeberl, Dwight DGlycogen storage disease (GSD) consists of more than 10 discrete conditions for which the biochemical and genetic bases have been determined, and new therapies have been under development for several of these conditions. Gene therapy research has generated proof-of-concept for GSD types I (von Gierke disease) and II (Pompe disease). Key features of these gene therapy strategies include the choice of vector and regulatory cassette, and recently adeno-associated virus (AAV) vectors containing tissue-specific promoters have achieved a high degree of efficacy. Efficacy of gene therapy for Pompe disease depend upon the induction of immune tolerance to the therapeutic enzyme. Efficacy of von Gierke disease is transient, waning gradually over the months following vector administration. Small molecule therapies have been evaluated with the goal of improving standard of care therapy or ameliorating the cellular abnormalities associated with specific GSDs. The receptor-mediated uptake of the therapeutic enzyme in Pompe disease was enhanced by administration of β2 agonists. Rapamycin reduced the liver fibrosis observed in GSD III. Further development of gene therapy could provide curative therapy for patients with GSD, if efficacy from preclinical research is observed in future clinical trials and these treatments become clinically available.Item Open Access The upstream enhancer elements of the G6PC promoter are critical for optimal G6PC expression in murine glycogen storage disease type Ia.(Mol Genet Metab, 2013-11) Lee, Young Mok; Pan, Chi-Jiunn; Koeberl, Dwight D; Mansfield, Brian C; Chou, Janice YGlycogen storage disease type-Ia (GSD-Ia) patients deficient in glucose-6-phosphatase-α (G6Pase-α or G6PC) manifest impaired glucose homeostasis characterized by fasting hypoglycemia, growth retardation, hepatomegaly, nephromegaly, hyperlipidemia, hyperuricemia, and lactic acidemia. Two efficacious recombinant adeno-associated virus pseudotype 2/8 (rAAV8) vectors expressing human G6Pase-α have been independently developed. One is a single-stranded vector containing a 2864-bp of the G6PC promoter/enhancer (rAAV8-GPE) and the other is a double-stranded vector containing a shorter 382-bp minimal G6PC promoter/enhancer (rAAV8-miGPE). To identify the best construct, a direct comparison of the rAAV8-GPE and the rAAV8-miGPE vectors was initiated to determine the best vector to take forward into clinical trials. We show that the rAAV8-GPE vector directed significantly higher levels of hepatic G6Pase-α expression, achieved greater reduction in hepatic glycogen accumulation, and led to a better toleration of fasting in GSD-Ia mice than the rAAV8-miGPE vector. Our results indicated that additional control elements in the rAAV8-GPE vector outweigh the gains from the double-stranded rAAV8-miGPE transduction efficiency, and that the rAAV8-GPE vector is the current choice for clinical translation in human GSD-Ia.