Browsing by Subject "Guanosine Triphosphate"
Now showing 1 - 11 of 11
Results Per Page
Sort Options
Item Open Access ARFGAP1 plays a central role in coupling COPI cargo sorting with vesicle formation.(J Cell Biol, 2005-01-17) Lee, SY; Yang, JS; Hong, W; Premont, RT; Hsu, VWExamining how key components of coat protein I (COPI) transport participate in cargo sorting, we find that, instead of ADP ribosylation factor 1 (ARF1), its GTPase-activating protein (GAP) plays a direct role in promoting the binding of cargo proteins by coatomer (the core COPI complex). Activated ARF1 binds selectively to SNARE cargo proteins, with this binding likely to represent at least a mechanism by which activated ARF1 is stabilized on Golgi membrane to propagate its effector functions. We also find that the GAP catalytic activity plays a critical role in the formation of COPI vesicles from Golgi membrane, in contrast to the prevailing view that this activity antagonizes vesicle formation. Together, these findings indicate that GAP plays a central role in coupling cargo sorting and vesicle formation, with implications for simplifying models to describe how these two processes are coupled during COPI transport.Item Open Access ARFGAP1 promotes the formation of COPI vesicles, suggesting function as a component of the coat.(J Cell Biol, 2002-10-14) Yang, JS; Lee, SY; Gao, M; Bourgoin, S; Randazzo, PA; Premont, RT; Hsu, VWThe role of GTPase-activating protein (GAP) that deactivates ADP-ribosylation factor 1 (ARF1) during the formation of coat protein I (COPI) vesicles has been unclear. GAP is originally thought to antagonize vesicle formation by triggering uncoating, but later studies suggest that GAP promotes cargo sorting, a process that occurs during vesicle formation. Recent models have attempted to reconcile these seemingly contradictory roles by suggesting that cargo proteins suppress GAP activity during vesicle formation, but whether GAP truly antagonizes coat recruitment in this process has not been assessed directly. We have reconstituted the formation of COPI vesicles by incubating Golgi membrane with purified soluble components, and find that ARFGAP1 in the presence of GTP promotes vesicle formation and cargo sorting. Moreover, the presence of GTPgammaS not only blocks vesicle uncoating but also vesicle formation by preventing the proper recruitment of GAP to nascent vesicles. Elucidating how GAP functions in vesicle formation, we find that the level of GAP on the reconstituted vesicles is at least as abundant as COPI and that GAP binds directly to the dilysine motif of cargo proteins. Collectively, these findings suggest that ARFGAP1 promotes vesicle formation by functioning as a component of the COPI coat.Item Open Access Compartmentalization and regulation of GTP in control of cellular phenotypes.(Trends in molecular medicine, 2022-09) Wolff, David W; Bianchi-Smiraglia, Anna; Nikiforov, Mikhail AGenetic or pharmacological inhibition of enzymes involved in GTP biosynthesis has substantial biological effects, underlining the need to better understand the function of GTP levels in regulation of cellular processes and the significance of targeting GTP biosynthesis enzymes for therapeutic intervention. Our current understanding of spatiotemporal regulation of GTP metabolism and its role in physiological and pathological cellular processes is far from complete. Novel methodologies such as genetically encoded sensors of free GTP offered insights into intracellular distribution and function of GTP molecules. In the current Review, we provide analysis of recent discoveries in the field of GTP metabolism and evaluate the key enzymes as molecular targets.Item Open Access Direct evidence that Gi-coupled receptor stimulation of mitogen-activated protein kinase is mediated by G beta gamma activation of p21ras.(Proc Natl Acad Sci U S A, 1994-12-20) Koch, WJ; Hawes, BE; Allen, LF; Lefkowitz, RJStimulation of Gi-coupled receptors leads to the activation of mitogen-activated protein kinases (MAP kinases). In several cell types, this appears to be dependent on the activation of p21ras (Ras). Which G-protein subunit(s) (G alpha or the G beta gamma complex) primarily is responsible for triggering this signaling pathway, however, is unclear. We have demonstrated previously that the carboxyl terminus of the beta-adrenergic receptor kinase, containing its G beta gamma-binding domain, is a cellular G beta gamma antagonist capable of specifically distinguishing G alpha- and G beta gamma-mediated processes. Using this G beta gamma inhibitor, we studied Ras and MAP kinase activation through endogenous Gi-coupled receptors in Rat-1 fibroblasts and through receptors expressed by transiently transfected COS-7 cells. We report here that both Ras and MAP kinase activation in response to lysophosphatidic acid is markedly attenuated in Rat-1 cells stably transfected with a plasmid encoding this G beta gamma antagonist. Likewise in COS-7 cells transfected with plasmids encoding Gi-coupled receptors (alpha 2-adrenergic and M2 muscarinic), the activation of Ras and MAP kinase was significantly reduced in the presence of the coexpressed G beta gamma antagonist. Ras-MAP kinase activation mediated through a Gq-coupled receptor (alpha 1-adrenergic) or the tyrosine kinase epidermal growth factor receptor was unaltered by this G beta gamma antagonist. These results identify G beta gamma as the primary mediator of Ras activation and subsequent signaling via MAP kinase in response to stimulation of Gi-coupled receptors.Item Open Access G proteins in medicine.(N Engl J Med, 1995-01-19) Lefkowitz, RJItem Open Access High-resolution crystal structures of Escherichia coli FtsZ bound to GDP and GTP.(Acta crystallographica. Section F, Structural biology communications, 2020-02-05) Schumacher, Maria A; Ohashi, Tomoo; Corbin, Lauren; Erickson, Harold PBacterial cytokinesis is mediated by the Z-ring, which is formed by the prokaryotic tubulin homolog FtsZ. Recent data indicate that the Z-ring is composed of small patches of FtsZ protofilaments that travel around the bacterial cell by treadmilling. Treadmilling involves a switch from a relaxed (R) state, favored for monomers, to a tense (T) conformation, which is favored upon association into filaments. The R conformation has been observed in numerous monomeric FtsZ crystal structures and the T conformation in Staphylococcus aureus FtsZ crystallized as assembled filaments. However, while Escherichia coli has served as a main model system for the study of the Z-ring and the associated divisome, a structure has not yet been reported for E. coli FtsZ. To address this gap, structures were determined of the E. coli FtsZ mutant FtsZ(L178E) with GDP and GTP bound to 1.35 and 1.40 Å resolution, respectively. The E. coli FtsZ(L178E) structures both crystallized as straight filaments with subunits in the R conformation. These high-resolution structures can be employed to facilitate experimental cell-division studies and their interpretation in E. coli.Item Open Access Inside-out Z rings--constriction with and without GTP hydrolysis.(Molecular microbiology, 2011-07) Osawa, Masaki; Erickson, Harold PThe bacterial tubulin homologue FtsZ forms a ring-like structure called the Z ring that drives cytokinesis. We showed previously that FtsZ-YFP-mts, which has a short amphipathic helix (mts) on its C terminus that inserts into the membrane, can assemble contractile Z rings in tubular liposomes without any other protein. Here we study mts-FtsZ-YFP, where the membrane tether is switched to the opposite side of the protofilament. This assembled 'inside-out' Z rings that wrapped around the outside surface of tubular liposomes. The inside-out Z rings were highly dynamic, and generated a constriction force that squeezed the tubular liposomes from outside. This is consistent with models where the constriction force is generated by curved protofilaments bending the membrane. We used this system to test how GTP hydrolysis by FtsZ is involved in Z-ring constriction. Without GTP hydrolysis, Z rings could still assemble and generate an initial constriction. However, the constriction quickly stopped, suggesting that Z rings became rigidly stabilized in the absence of GTP hydrolysis. We propose that remodelling of the Z ring, mediated by GTP hydrolysis and exchange of subunits, is necessary for the continuous constriction.Item Open Access Phosphorylation of guanosine monophosphate reductase triggers a GTP-dependent switch from pro- to anti-oncogenic function of EPHA4.(Cell chemical biology, 2022-06) Wolff, David W; Deng, Zhiyong; Bianchi-Smiraglia, Anna; Foley, Colleen E; Han, Zhannan; Wang, Xingyou; Shen, Shichen; Rosenberg, Masha M; Moparthy, Sudha; Yun, Dong Hyun; Chen, Jialin; Baker, Brian K; Roll, Matthew V; Magiera, Andrew J; Li, Jun; Hurley, Edward; Feltri, Maria Laura; Cox, Anderson O; Lee, Jingyun; Furdui, Cristina M; Liu, Liang; Bshara, Wiam; LaConte, Leslie EW; Kandel, Eugene S; Pasquale, Elena B; Qu, Jun; Hedstrom, Lizbeth; Nikiforov, Mikhail ASignal transduction pathways post-translationally regulating nucleotide metabolism remain largely unknown. Guanosine monophosphate reductase (GMPR) is a nucleotide metabolism enzyme that decreases GTP pools by converting GMP to IMP. We observed that phosphorylation of GMPR at Tyr267 is critical for its activity and found that this phosphorylation by ephrin receptor tyrosine kinase EPHA4 decreases GTP pools in cell protrusions and levels of GTP-bound RAC1. EPHs possess oncogenic and tumor-suppressor activities, although the mechanisms underlying switches between these two modes are poorly understood. We demonstrated that GMPR plays a key role in EPHA4-mediated RAC1 suppression. This supersedes GMPR-independent activation of RAC1 by EPHA4, resulting in a negative overall effect on melanoma cell invasion and tumorigenicity. Accordingly, EPHA4 levels increase during melanoma progression and inversely correlate with GMPR levels in individual melanoma tumors. Therefore, phosphorylation of GMPR at Tyr267 is a metabolic signal transduction switch controlling GTP biosynthesis and transformed phenotypes.Item Open Access PPDPF Promotes the Development of Mutant KRAS-Driven Pancreatic Ductal Adenocarcinoma by Regulating the GEF Activity of SOS1.(Advanced science (Weinheim, Baden-Wurttemberg, Germany), 2023-01) Ni, Qian-Zhi; Zhu, Bing; Ji, Yan; Zheng, Qian-Wen; Liang, Xin; Ma, Ning; Jiang, Hao; Zhang, Feng-Kun; Shang, Yu-Rong; Wang, Yi-Kang; Xu, Sheng; Zhang, Er-Bin; Yuan, Yan-Mei; Chen, Tian-Wei; Yin, Fen-Fen; Cao, Hui-Jun; Huang, Jing-Yi; Xia, Ji; Ding, Xu-Fen; Qiu, Xiao-Song; Ding, Kai; Song, Chao; Zhou, Wen-Tao; Wu, Meng; Wang, Kang; Lui, Rui; Lin, Qiu; Chen, Wei; Li, Zhi-Gang; Cheng, Shu-Qun; Wang, Xiao-Fan; Xie, Dong; Li, Jing-JingThe guanine nucleotide exchange factor (GEF) SOS1 catalyzes the exchange of GDP for GTP on RAS. However, regulation of the GEF activity remains elusive. Here, the authors report that PPDPF functions as an important regulator of SOS1. The expression of PPDPF is significantly increased in pancreatic ductal adenocarcinoma (PDAC), associated with poor prognosis and recurrence of PDAC patients. Overexpression of PPDPF promotes PDAC cell growth in vitro and in vivo, while PPDPF knockout exerts opposite effects. Pancreatic-specific deletion of PPDPF profoundly inhibits tumor development in KRASG12D -driven genetic mouse models of PDAC. PPDPF can bind GTP and transfer GTP to SOS1. Mutations of the GTP-binding sites severely impair the tumor-promoting effect of PPDPF. Consistently, mutations of the critical amino acids mediating SOS1-PPDPF interaction significantly impair the GEF activity of SOS1. Therefore, this study demonstrates a novel model of KRAS activation via PPDPF-SOS1 axis, and provides a promising therapeutic target for PDAC.Item Open Access Rapid in vitro assembly of Caulobacter crescentus FtsZ protein at pH 6.5 and 7.2.(The Journal of biological chemistry, 2013-08) Milam, Sara L; Erickson, Harold PFtsZ from most bacteria assembles rapidly in vitro, reaching a steady-state plateau in 5-10 s after addition of GTP. A recent study used a novel dynamic light-scattering technique to assay the assembly of FtsZ from Caulobacter crescentus (CcFtsZ) and reported that assembly required 10 min, ∼100 times slower than for related bacteria. Previous studies had indicated normal, rapid assembly of CcFtsZ. We have reinvestigated the assembly kinetics using a mutant L72W, where assembly of subunits into protofilaments results in a significant increase in tryptophan fluorescence. We found that assembly reached a plateau in 5-10 s and showed no change in the following 10 min. This was confirmed by 90° light scattering and negative-stain electron microscopy. The very slow kinetics in the dynamic light-scattering study may be related to a refractory state induced when the FtsZ protein is stored without nucleotide, a phenomenon that we had observed in a previous study of EcFtsZ. We conclude that CcFtsZ is not an outlier, but shows rapid assembly kinetics similar to FtsZ from related bacteria.Item Open Access Regulation of local GTP availability controls RAC1 activity and cell invasion.(Nature communications, 2021-10) Bianchi-Smiraglia, Anna; Wolff, David W; Marston, Daniel J; Deng, Zhiyong; Han, Zhannan; Moparthy, Sudha; Wombacher, Rebecca M; Mussell, Ashley L; Shen, Shichen; Chen, Jialin; Yun, Dong-Hyun; O'Brien Cox, Anderson; Furdui, Cristina M; Hurley, Edward; Feltri, Maria Laura; Qu, Jun; Hollis, Thomas; Kengne, Jules Berlin Nde; Fongang, Bernard; Sousa, Rui J; Kandel, Mikhail E; Kandel, Eugene S; Hahn, Klaus M; Nikiforov, Mikhail APhysiological changes in GTP levels in live cells have never been considered a regulatory step of RAC1 activation because intracellular GTP concentration (determined by chromatography or mass spectrometry) was shown to be substantially higher than the in vitro RAC1 GTP dissociation constant (RAC1-GTP Kd). Here, by combining genetically encoded GTP biosensors and a RAC1 activity biosensor, we demonstrated that GTP levels fluctuating around RAC1-GTP Kd correlated with changes in RAC1 activity in live cells. Furthermore, RAC1 co-localized in protrusions of invading cells with several guanylate metabolism enzymes, including rate-limiting inosine monophosphate dehydrogenase 2 (IMPDH2), which was partially due to direct RAC1-IMPDH2 interaction. Substitution of endogenous IMPDH2 with IMPDH2 mutants incapable of binding RAC1 did not affect total intracellular GTP levels but suppressed RAC1 activity. Targeting IMPDH2 away from the plasma membrane did not alter total intracellular GTP pools but decreased GTP levels in cell protrusions, RAC1 activity, and cell invasion. These data provide a mechanism of regulation of RAC1 activity by local GTP pools in live cells.