Browsing by Subject "HDAC"
- Results Per Page
- Sort Options
Item Open Access Design, Synthesis, and Biological Characterization of Largazole Analogues(2016) Kim, BumkiHistone deacetylases (HDACs) have been shown to play key roles in tumorigenesis, and
have been validated as effective enzyme target for cancer treatment. Largazole, a marine natural
product isolated from the cyanobacterium Symploca, is an extremely potent HDAC inhibitor that
has been shown to possess high differential cytotoxicity towards cancer cells along with excellent
HDAC class-selectivity. However, improvements can be made in the isoform-selectivity and
pharmacokinetic properties of largazole.
In attempts to make these improvements and furnish a more efficient biochemical probe
as well as a potential therapeutic, several largazole analogues have been designed, synthesized,
and tested for their biological activity. Three different types of analogues were prepared. First,
different chemical functionalities were introduced at the C2 position to probe the class Iselectivity profile of largazole. Additionally, docking studies led to the design of a potential
HDAC8-selective analogue. Secondly, the thiol moiety in largazole was replaced with a wide
variety of othe zinc-binding group in order to probe the effect of Zn2+ affinity on HDAC
inhibition. Lastly, three disulfide analogues of largazole were prepared in order to utilize a
different prodrug strategy to modulate the pharmacokinetic properties of largazole.
Through these analogues it was shown that C2 position can be modified significantly
without a major loss in activity while also eliciting minimal changes in isoform-selectivity. While
the Zn2+-binding group plays a major role in HDAC inhibition, it was also shown that the thiol
can be replaced by other functionalities while still retaining inhibitory activity. Lastly, the use of
a disulfide prodrug strategy was shown to affect pharmacokinetic properties resulting in varying
functional responses in vitro and in vivo.
v
Largazole is already an impressive HDAC inhibitor that shows incredible promise.
However, in order to further develop this natural product into an anti-cancer therapeutic as well as
a chemical probe, improvements in the areas of pharmacokinetics as well as isoform-selectivity
are required. Through these studies we plan on building upon existing structure–activity
relationships to further our understanding of largazole’s mechanism of inhibition so that we may
improve these properties and ultimately develop largazole into an efficient HDAC inhibitor that
may be used as an anti-cancer therapeutic as well as a chemical probe for the studying of
biochemical systems.
Item Open Access I. Formal Synthesis of SCH 351448. II. Synthesis and Characterization of Largazole Analogues.(2012) Park, HeekwangPart I: Extensive studies for treating hypercholesterolemia, one of the major causes of human morbidity throughout the world, have led to the development of statin drugs-the most prevalent drug prescribed today. In addition to statins, SCH 351448 has attracted considerable interest from many synthetic groups as it is the only selective activator of low-density lipoprotein receptor (LDL-R) containing structural features such as a C2-symmetry and 2,6-cis-tetrahydropyrans. Even though direct dimerization has been the most efficient method for the construction of C2-symmetric macrodiolides, total syntheses of SCH 351448 were only achived by stepwise dimerizations. In this chapter, attempts were made to exploit the inherent C2-symmetric macrodioloide via direct dimerization using various single monomeric units, but they did not prove to be viable. Therefore, formal synthesis of SCH 351448 was accomplished through two tandem sequences; cross-metathesis/conjugate addition and allylic oxidation/conjugate addition reactions, to stereoselectively construct 2,6-cis-tetrahydropyrans embedded in SCH 351448. The 1,4-syn aldol and the Suzuki coupling reactions were effective for the construction of the monomeric units. This convergent route should be broadly applicable to the synthesis of a diverse set of analogues of SCH 351448 for further biological studies.
Part II: Histone deacetylases (HDACs) play a significant role in tumorigenesis and have been recognized as one of the target enzymes for cancer therapy. Extensive studies in small molecules inhibiting HDAC enzymes have resulted in pan-HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) and class I HDAC inhibitor FK228, approved by FDA in 2006 and 2009, respectively. Recently, largazole, a natural product was isolated from Symploca sp. presented HDAC inhibitory activity. Due to its unique differential cytotoxicity, potency, and class selectivity, structure-activity relationship (SAR) studies of largazole have been achieved to improve the potency and class selectivity. In addition to such biological activities, pharmacokinetic characteristics and isoform selectivity should be improved for the therapeutic potential of cancer therapy. In this chapter, two types of largazole analogues were synthesized by a convergent route that involved an efficient and high yielding multistep sequence. The synthesis of three disulfide analogues to improve pharmacokinetics and five linker analogues to enhance HDAC isoform selectivity is disclosed. The evaluation of biological studies is in progress.
Item Open Access MEF2 and the Right Ventricle: From Development to Disease.(Frontiers in cardiovascular medicine, 2019-01) Clapham, Katharine R; Singh, Inderjit; Capuano, Isabella S; Rajagopal, Sudarshan; Chun, Hyung JPulmonary arterial hypertension is a progressive and ultimately life-limiting disease in which survival is closely linked to right ventricular function. The right ventricle remains relatively understudied, as it is known to have key developmental and structural differences from the left ventricle. Here, we will highlight what is known about the right ventricle in normal physiology and in the disease state of pulmonary arterial hypertension. Specifically, we will explore the role of the family of MEF2 (myocyte enhancer factor 2) transcription factors in right ventricular development, its response to increased afterload, and in the endothelial dysfunction that characterizes pulmonary arterial hypertension. Finally, we will turn to review potentially novel therapeutic strategies targeting these pathways.Item Open Access Roles of Cytoplasmic Deacetylase Hdac6 in Oncogenic Tumorigenesis(2008-04-21) Lee, YishanReversible acetylation has emerged as an important post-translational modification that rivals phosphorylation in regulating chromatin structure and gene expression. Acetylation of histone is associated with transcriptional activation while deacetylation is linked to transcriptional repression. Moreover, histone deacetylase inhibitors induce growth arrest, differentiation and apoptosis of cancer cells and therefore appear to be promising anti-tumor agents. While transcriptional deregulation is thought to be the main mechanism underlying their therapeutic effects, the exact mechanisms and targets by which HDAC inhibitors, which are mostly non-specific, achieve their anti-tumor effects remain poorly understood. In other words, it is not known which and how each HDAC members are involved in supporting tumor growth.
In this thesis, I have showed that HDAC6, a cytoplasmic localized and cytoskeleton-associated deacetylase, is required for efficient oncogenic transformation and tumor formation. I have found that HDAC6 expression is induced upon oncogenic Ras-induced transformation in both human somatic cells and murine fibroblasts. Conversely, murine fibroblasts deficient in HDAC6 are more resistant to both oncogenic Ras and ErbB2-dependent transformation, indicating a critical role for HDAC6 in oncogene-induced transformation. Supporting this hypothesis, inactivation of HDAC6 in several human cancer cell lines effectively impairs anchorage-independent growth in vitro and their ability to form tumors in immunocompromised mice. I have demonstrated that the impairment of anchorage independent growth in HDAC6 deficient cells is associated with increased anoikis and mechanistically a defect in activation of the AKT and ERK kinase cascades. Additionally, HDAC6 null mice are more resistant to two-stage chemical carcinogen-induced skin tumors. Finally, I have demonstrated that the tumor-promoting effect of HDAC6 is probably mediated through the molecular chaperon Hsp90. While Hsp90 is known to be deacetylated by HDAC6 and has been implicated in stabilizing Raf-1 and ErbB2, I have found that suppression of HDAC6 impairs the stability of Raf-1 and the association between Hsp90 and ErbB2.
In conclusion, my work provides the first experimental evidence that of all the HDAC members, the cytoplasmic deacetylase HDAC6 is required for efficient oncogenic transformation, indicating that reversible acetylation plays a critical role in regulating cellular functions of non-histone non-nuclear cytoplasmic proteins that contributes to malignant transformation. Furthermore, this work identifies HDAC6 as an important component underlying the anti-tumor effects of HDAC inhibitors.
Item Open Access Targeting Histone Deacetylases in Advanced Prostate Cancer(2015) Brunner, Abigail MariaThe androgen receptor (AR) signaling axis is a well-established therapeutic target in prostate cancer, due to its central role in tumor maintenance and progression. Although patients respond initially to androgen deprivation therapies and AR antagonists, they invariably progress to a castration-resistant state. Consequently, there is an unmet need for agents that target the AR signaling axis in a unique manner.
Histone deacetylase (HDAC) inhibitors repress AR signaling and prostate cancer growth in cellular and xenograft models. However, HDAC inhibitors also induce epithelial to mesenchymal (EMT) and neuroendocrine differentiation, both of which are associated with prostate cancer progression and aggressiveness. Given that 18 different HDAC isoforms have been identified in humans, and non-selective or Class I (HDAC1, 2, 3, and 8) HDAC inhibitors have been used in most of these studies, the relative contribution of individual HDAC isoforms to AR transcriptional activity and prostate cancer pathophysiology remains to be elucidated. The overarching goals of this study were to (1) determine the role of individual Class I HDACs in AR transcriptional activity and prostate cancer growth, (2) identify selective HDAC inhibitors that have reduced adverse profiles to the treatment of prostate cancer, and (3) identify potential HDAC-interacting proteins that regulate AR target gene transcription and prostate cancer growth.
Using genetic knockdown studies and pharmacological inhibitors with isoform selectivity, we identified that HDAC3 was required for AR transcriptional activity and proliferation in cellular models of androgen-sensitive and castration-resistant prostate cancer (CRPC). Additionally, we found that RGFP966, an HDAC3-selective inhibitor, attenuated the growth of a xenograft model of CRPC. Furthermore, non-selective HDAC inhibitors induced EMT and neuroendocrine markers in prostate cancer cells, but RGFP966 treatment did not. These studies provide rationale for selective inhibition of HDAC3 for the treatment of CRPC, and could provide an explanation for the lack of success using non-selective HDAC inhibitors in clinical trials for prostate cancer.
We also assessed the role of REV-ERB alpha, an HDAC3-interacting protein, in the regulation of AR transcriptional activity and prostate cancer growth. Using siRNA knockdown studies, REV-ERB inhibitors, and overexpression studies, we concluded that REV-ERB alpha; was required for AR target gene induction and prostate cancer growth, including models of CRPC. These studies also provide rational for targeting REV-ERB alpha; for the treatment of CRPC.
Taken together, these studies identify two novel targets in the HDAC signaling axis for the treatment of prostate cancer: HDAC3 and REV-ERB alpha. Our studies provide greater insight into AR transcriptional regulation and prostate cancer pathophysiology.