Browsing by Subject "HIV Antigens"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item Open Access A non-affinity purification process for GMP production of prefusion-closed HIV-1 envelope trimers from clades A and C for clinical evaluation.(Vaccine, 2021-06) Gulla, Krishana; Cibelli, Nicole; Cooper, Jonathan W; Fuller, Haley C; Schneiderman, Zachary; Witter, Sara; Zhang, Yaqiu; Changela, Anita; Geng, Hui; Hatcher, Christian; Narpala, Sandeep; Tsybovsky, Yaroslav; Zhang, Baoshan; Vrc Production Program; McDermott, Adrian B; Kwong, Peter D; Gowetski, Daniel BMetastable glycosylated immunogens present challenges for GMP manufacturing. The HIV-1 envelope (Env) glycoprotein trimer is covered by N-linked glycan comprising half its mass and requires both trimer assembly and subunit cleavage to fold into a prefusion-closed conformation. This conformation, the vaccine-desired antigenic state, is both metastable to structural rearrangement and labile to subunit dissociation. Prior reported GMP manufacturing for a soluble trimer stabilized in a near-native state by disulfide (SOS) and Ile-to-Pro (IP) mutations has employed affinity methods based on antibody 2G12, which recognizes only ~30% of circulating HIV strains. Here, we develop a scalable manufacturing process based on commercially available, non-affinity resins, and we apply the process to current GMP (cGMP) production of trimers from clades A and C, which have been found to boost cross-clade neutralizing responses in vaccine-test species. The clade A trimer, which we named "BG505 DS-SOSIP.664", contained an engineered disulfide (201C-433C; DS) within gp120, which further stabilized this trimer in a prefusion-closed conformation resistant to CD4-induced triggering. BG505 DS-SOSIP.664 was expressed in a CHO-DG44 stable cell line and purified with initial and final tangential flow filtration steps, three commercially available resin-based chromatography steps, and two orthogonal viral clearance steps. The non-affinity purification enabled efficient scale-up, with a 250 L-scale cGMP run yielding 9.6 g of purified BG505 DS-SOSIP.664. Antigenic analysis indicated retention of a prefusion-closed conformation, including recognition by apex-directed and fusion peptide-directed antibodies. The developed manufacturing process was suitable for 50 L-scale production of a second prefusion-stabilized Env trimer vaccine candidate, ConC-FP8v2 RnS-3mut-2G-SOSIP.664, yielding 7.8 g of this consensus clade C trimer. The successful process development and purification scale-up of HIV-1 Env trimers from different clades by using commercially available materials provide experimental demonstration for cGMP manufacturing of trimeric HIV-Env vaccine immunogens, in an antigenically desired conformation, without the use of costly affinity resins.Item Open Access Comparison of Detection Limits of Fourth- and Fifth-Generation Combination HIV Antigen-Antibody, p24 Antigen, and Viral Load Assays on Diverse HIV Isolates.(Journal of clinical microbiology, 2018-08) Stone, Mars; Bainbridge, John; Sanchez, Ana M; Keating, Sheila M; Pappas, Andrea; Rountree, Wes; Todd, Chris; Bakkour, Sonia; Manak, Mark; Peel, Sheila A; Coombs, Robert W; Ramos, Eric M; Shriver, M Kathleen; Contestable, Paul; Nair, Sangeetha Vijaysri; Wilson, David H; Stengelin, Martin; Murphy, Gary; Hewlett, Indira; Denny, Thomas N; Busch, Michael PDetection of acute HIV infection is critical for HIV public health and diagnostics. Clinical fourth-generation antigen (Ag)/antibody (Ab) combination (combo) and p24 Ag immunoassays have enhanced detection of acute infection compared to Ab-alone assays but require ongoing evaluation with currently circulating diverse subtypes. Genetically and geographically diverse HIV clinical isolates were used to assess clinical HIV diagnostic, blood screening, and next-generation assays. Three-hundred-member panels of 20 serially diluted well-characterized antibody-negative HIV isolates for which the researchers were blind to the results (blind panels) were distributed to manufacturers and end-user labs to assess the relative analytic sensitivity of currently approved and preapproved clinical HIV fourth-generation Ag/Ab combo or p24 Ag-alone immunoassays for the detection of diverse subtypes. The limits of detection (LODs) of virus were estimated for different subtypes relative to confirmed viral loads. Analysis of immunoassay sensitivity was benchmarked against confirmed viral load measurements on the blind panel. On the basis of the proportion of positive results on 300 observations, all Ag/Ab combo and standard sensitivity p24 Ag assays performed similarly and within half-log LODs, illustrating the similar breadth of reactivity and diagnostic utility. Ultrasensitive p24 Ag assays achieved dramatically increased sensitivities, while the rapid combo assays performed poorly. The similar performance of the different commercially available fourth-generation assays on diverse subtypes supports their use in broad geographic settings with locally circulating HIV clades and recombinant strains. Next-generation preclinical ultrasensitive p24 Ag assays achieved dramatically improved sensitivity, while rapid fourth-generation assays performed poorly for p24 Ag detection.Item Open Access Computational analysis of antibody dynamics identifies recent HIV-1 infection.(JCI insight, 2017-12-21) Seaton, Kelly E; Vandergrift, Nathan A; Deal, Aaron W; Rountree, Wes; Bainbridge, John; Grebe, Eduard; Anderson, David A; Sawant, Sheetal; Shen, Xiaoying; Yates, Nicole L; Denny, Thomas N; Liao, Hua-Xin; Haynes, Barton F; Robb, Merlin L; Parkin, Neil; Santos, Breno R; Garrett, Nigel; Price, Matthew A; Naniche, Denise; Duerr, Ann C; CEPHIA group; Keating, Sheila; Hampton, Dylan; Facente, Shelley; Marson, Kara; Welte, Alex; Pilcher, Christopher D; Cohen, Myron S; Tomaras, Georgia DAccurate HIV-1 incidence estimation is critical to the success of HIV-1 prevention strategies. Current assays are limited by high false recent rates (FRRs) in certain populations and a short mean duration of recent infection (MDRI). Dynamic early HIV-1 antibody response kinetics were harnessed to identify biomarkers for improved incidence assays. We conducted retrospective analyses on circulating antibodies from known recent and longstanding infections and evaluated binding and avidity measurements of Env and non-Env antigens and multiple antibody forms (i.e., IgG, IgA, IgG3, IgG4, dIgA, and IgM) in a diverse panel of 164 HIV-1-infected participants (clades A, B, C). Discriminant function analysis identified an optimal set of measurements that were subsequently evaluated in a 324-specimen blinded biomarker validation panel. These biomarkers included clade C gp140 IgG3, transmitted/founder clade C gp140 IgG4 avidity, clade B gp140 IgG4 avidity, and gp41 immunodominant region IgG avidity. MDRI was estimated at 215 day or alternatively, 267 days. FRRs in untreated and treated subjects were 5.0% and 3.6%, respectively. Thus, computational analysis of dynamic HIV-1 antibody isotype and antigen interactions during infection enabled design of a promising HIV-1 recency assay for improved cross-sectional incidence estimation.Item Open Access IGHV1-69 B cell chronic lymphocytic leukemia antibodies cross-react with HIV-1 and hepatitis C virus antigens as well as intestinal commensal bacteria.(PLoS One, 2014) Hwang, Kwan-Ki; Trama, Ashley M; Kozink, Daniel M; Chen, Xi; Wiehe, Kevin; Cooper, Abby J; Xia, Shi-Mao; Wang, Minyue; Marshall, Dawn J; Whitesides, John; Alam, Munir; Tomaras, Georgia D; Allen, Steven L; Rai, Kanti R; McKeating, Jane; Catera, Rosa; Yan, Xiao-Jie; Chu, Charles C; Kelsoe, Garnett; Liao, Hua-Xin; Chiorazzi, Nicholas; Haynes, Barton FB-cell chronic lymphocytic leukemia (B-CLL) patients expressing unmutated immunoglobulin heavy variable regions (IGHVs) use the IGHV1-69 B cell receptor (BCR) in 25% of cases. Since HIV-1 envelope gp41 antibodies also frequently use IGHV1-69 gene segments, we hypothesized that IGHV1-69 B-CLL precursors may contribute to the gp41 B cell response during HIV-1 infection. To test this hypothesis, we rescued 5 IGHV1-69 unmutated antibodies as heterohybridoma IgM paraproteins and as recombinant IgG1 antibodies from B-CLL patients, determined their antigenic specificities and analyzed BCR sequences. IGHV1-69 B-CLL antibodies were enriched for reactivity with HIV-1 envelope gp41, influenza, hepatitis C virus E2 protein and intestinal commensal bacteria. These IGHV1-69 B-CLL antibodies preferentially used IGHD3 and IGHJ6 gene segments and had long heavy chain complementary determining region 3s (HCDR3s) (≥21 aa). IGHV1-69 B-CLL BCRs exhibited a phenylalanine at position 54 (F54) of the HCDR2 as do rare HIV-1 gp41 and influenza hemagglutinin stem neutralizing antibodies, while IGHV1-69 gp41 antibodies induced by HIV-1 infection predominantly used leucine (L54) allelic variants. These results demonstrate that the B-CLL cell population is an expansion of members of the innate polyreactive B cell repertoire with reactivity to a number of infectious agent antigens including intestinal commensal bacteria. The B-CLL IGHV1-69 B cell usage of F54 allelic variants strongly suggests that IGHV1-69 B-CLL gp41 antibodies derive from a restricted B cell pool that also produces rare HIV-1 gp41 and influenza hemagglutinin stem antibodies.Item Open Access Initial HIV-1 antigen-specific CD8+ T cells in acute HIV-1 infection inhibit transmitted/founder virus replication.(J Virol, 2012-06) Freel, SA; Picking, RA; Ferrari, G; Ding, H; Ochsenbauer, C; Kappes, JC; Kirchherr, J; Soderberg, K; Weinhold, KJ; Cunningham, CK; Denny, T; Crump, JA; Cohen, MS; McMichael, AJ; Haynes, BF; Tomaras, GDCD8-mediated virus inhibition can be detected in HIV-1-positive subjects who naturally control virus replication. Characterizing the inhibitory function of CD8(+) T cells during acute HIV-1 infection (AHI) can elucidate the nature of the CD8(+) responses that can be rapidly elicited and that contribute to virus control. We examined the timing and HIV-1 antigen specificity of antiviral CD8(+) T cells during AHI. Autologous and heterologous CD8(+) T cell antiviral functions were assessed longitudinally during AHI in five donors from the CHAVI 001 cohort using a CD8(+) T cell-mediated virus inhibition assay (CD8 VIA) and transmitted/founder (T/F) viruses. Potent CD8(+) antiviral responses against heterologous T/F viruses appeared during AHI at the first time point sampled in each of the 5 donors (Fiebig stages 1/2 to 5). Inhibition of an autologous T/F virus was durable to 48 weeks; however, inhibition of heterologous responses declined concurrent with the resolution of viremia. HIV-1 viruses from 6 months postinfection were more resistant to CD8(+)-mediated virus inhibition than cognate T/F viruses, demonstrating that the virus escapes early from CD8(+) T cell-mediated inhibition of virus replication. CD8(+) T cell antigen-specific subsets mediated inhibition of T/F virus replication via soluble components, and these soluble responses were stimulated by peptide pools that include epitopes that were shown to drive HIV-1 escape during AHI. These data provide insights into the mechanisms of CD8-mediated virus inhibition and suggest that functional analyses will be important for determining whether similar antigen-specific virus inhibition can be induced by T cell-directed vaccine strategies.Item Open Access Multiple HIV-1-specific IgG3 responses decline during acute HIV-1: implications for detection of incident HIV infection.(AIDS, 2011-11-13) Yates, Nicole L; Lucas, Judith T; Nolen, Tracy L; Vandergrift, Nathan A; Soderberg, Kelly A; Seaton, Kelly E; Denny, Thomas N; Haynes, Barton F; Cohen, Myron S; Tomaras, Georgia DOBJECTIVE: Different HIV-1 antigen specificities appear in sequence after HIV-1 transmission and the immunoglobulin G (IgG) subclass responses to HIV antigens are distinct from each other. The initial predominant IgG subclass response to HIV-1 infection consists of IgG1 and IgG3 antibodies with a noted decline in some IgG3 antibodies during acute HIV-1 infection. Thus, we postulate that multiple antigen-specific IgG3 responses may serve as surrogates for the relative time since HIV-1 acquisition. DESIGN: We determined the magnitude, peak, and half-life of HIV-1 antigen-specific IgG1 and IgG3 antibodies in 41 HIV-1-infected individuals followed longitudinally from acute infection during the first appearance of HIV-1-specific antibodies through approximately 6 months after infection. METHODS: We used quantitative HIV-1-binding antibody multiplex assays and exponential decay models to estimate concentrations of IgG1 and IgG3 antibodies to eight different HIV-1 proteins including gp140 Env, gp120 Env, gp41 Env, p66 reverse transcriptase, p31 Integrase, Tat, Nef, and p55 Gag proteins during acute/recent HIV-1 infection. RESULTS: Among HIV-1-specific IgG3 responses, anti-gp41 IgG3 antibodies were the first to appear. We found that anti-gp41 Env IgG3 and anti-p66 reverse transcriptase IgG3 antibodies, in addition to anti-Gag IgG3 antibodies, each consistently and measurably declined after acute infection, in contrast to the persistent antigen-specific IgG1 responses. CONCLUSION: The detailed measurements of the decline in multiple HIV-specific IgG3 responses simultaneous with persistent IgG1 responses during acute and recent HIV-1 infection could serve as markers for detection of incident HIV infection.Item Open Access Potent functional antibody responses elicited by HIV-I DNA priming and boosting with heterologous HIV-1 recombinant MVA in healthy Tanzanian adults.(PLoS One, 2015) Joachim, Agricola; Nilsson, Charlotta; Aboud, Said; Bakari, Muhammad; Lyamuya, Eligius F; Robb, Merlin L; Marovich, Mary A; Earl, Patricia; Moss, Bernard; Ochsenbauer, Christina; Wahren, Britta; Mhalu, Fred; Sandström, Eric; Biberfeld, Gunnel; Ferrari, Guido; Polonis, Victoria RUNLABELLED: Vaccine-induced HIV antibodies were evaluated in serum samples collected from healthy Tanzanian volunteers participating in a phase I/II placebo-controlled double blind trial using multi-clade, multigene HIV-DNA priming and recombinant modified vaccinia Ankara (HIV-MVA) virus boosting (HIVIS03). The HIV-DNA vaccine contained plasmids expressing HIV-1 gp160 subtypes A, B, C, Rev B, Gag A, B and RTmut B, and the recombinant HIV-MVA boost expressed CRF01_AE HIV-1 Env subtype E and Gag-Pol subtype A. While no neutralizing antibodies were detected using pseudoviruses in the TZM-bl cell assay, this prime-boost vaccination induced neutralizing antibodies in 83% of HIVIS03 vaccinees when a peripheral blood mononuclear cell (PBMC) assay using luciferase reporter-infectious molecular clones (LucR-IMC) was employed. The serum neutralizing activity was significantly (but not completely) reduced upon depletion of natural killer (NK) cells from PBMC (p=0.006), indicating a role for antibody-mediated Fcγ-receptor function. High levels of antibody-dependent cellular cytotoxicity (ADCC)-mediating antibodies against CRF01_AE and/or subtype B were subsequently demonstrated in 97% of the sera of vaccinees. The magnitude of ADCC-mediating antibodies against CM235 CRF01_AE IMC-infected cells correlated with neutralizing antibodies against CM235 in the IMC/PBMC assay. In conclusion, HIV-DNA priming, followed by two HIV-MVA boosts elicited potent ADCC responses in a high proportion of Tanzanian vaccinees. Our findings highlight the potential of HIV-DNA prime HIV-MVA boost vaccines for induction of functional antibody responses and suggest this vaccine regimen and ADCC studies as potentially important new avenues in HIV vaccine development. TRIAL REGISTRATION: Controlled-Trials ISRCTN90053831 The Pan African Clinical Trials Registry ATMR2009040001075080 (currently PACTR2009040001075080).Item Open Access Potential To Streamline Heterologous DNA Prime and NYVAC/Protein Boost HIV Vaccine Regimens in Rhesus Macaques by Employing Improved Antigens.(J Virol, 2016-04) Asbach, Benedikt; Kliche, Alexander; Köstler, Josef; Perdiguero, Beatriz; Esteban, Mariano; Jacobs, Bertram L; Montefiori, David C; LaBranche, Celia C; Yates, Nicole L; Tomaras, Georgia D; Ferrari, Guido; Foulds, Kathryn E; Roederer, Mario; Landucci, Gary; Forthal, Donald N; Seaman, Michael S; Hawkins, Natalie; Self, Steven G; Sato, Alicia; Gottardo, Raphael; Phogat, Sanjay; Tartaglia, James; Barnett, Susan W; Burke, Brian; Cristillo, Anthony D; Weiss, Deborah E; Francis, Jesse; Galmin, Lindsey; Ding, Song; Heeney, Jonathan L; Pantaleo, Giuseppe; Wagner, RalfUNLABELLED: In a follow-up to the modest efficacy observed in the RV144 trial, researchers in the HIV vaccine field seek to substantiate and extend the results by evaluating other poxvirus vectors and combinations with DNA and protein vaccines. Earlier clinical trials (EuroVacc trials 01 to 03) evaluated the immunogenicity of HIV-1 clade C GagPolNef and gp120 antigens delivered via the poxviral vector NYVAC. These showed that a vaccination regimen including DNA-C priming prior to a NYVAC-C boost considerably enhanced vaccine-elicited immune responses compared to those with NYVAC-C alone. Moreover, responses were improved by using three as opposed to two DNA-C primes. In the present study, we assessed in nonhuman primates whether such vaccination regimens can be streamlined further by using fewer and accelerated immunizations and employing a novel generation of improved DNA-C and NYVAC-C vaccine candidates designed for higher expression levels and more balanced immune responses. Three different DNA-C prime/NYVAC-C+ protein boost vaccination regimens were tested in rhesus macaques. All regimens elicited vigorous and well-balanced CD8(+)and CD4(+)T cell responses that were broad and polyfunctional. Very high IgG binding titers, substantial antibody-dependent cellular cytotoxicity (ADCC), and modest antibody-dependent cell-mediated virus inhibition (ADCVI), but very low neutralization activity, were measured after the final immunizations. Overall, immune responses elicited in all three groups were very similar and of greater magnitude, breadth, and quality than those of earlier EuroVacc vaccines. In conclusion, these findings indicate that vaccination schemes can be simplified by using improved antigens and regimens. This may offer a more practical and affordable means to elicit potentially protective immune responses upon vaccination, especially in resource-constrained settings. IMPORTANCE: Within the EuroVacc clinical trials, we previously assessed the immunogenicity of HIV clade C antigens delivered in a DNA prime/NYVAC boost regimen. The trials showed that the DNA prime crucially improved the responses, and three DNA primes with a NYVAC boost appeared to be optimal. Nevertheless, T cell responses were primarily directed toward Env, and humoral responses were modest. The aim of this study was to assess improved antigens for the capacity to elicit more potent and balanced responses in rhesus macaques, even with various simpler immunization regimens. Our results showed that the novel antigens in fact elicited larger numbers of T cells with a polyfunctional profile and a good Env-GagPolNef balance, as well as high-titer and Fc-functional antibody responses. Finally, comparison of the different schedules indicates that a simpler regimen of only two DNA primes and one NYVAC boost in combination with protein may be very efficient, thus showing that the novel antigens allow for easier immunization protocols.