Browsing by Subject "HIV Envelope Protein gp41"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Open Access Functional stability of unliganded envelope glycoprotein spikes among isolates of human immunodeficiency virus type 1 (HIV-1).(PloS one, 2011-01) Agrawal, Nitish; Leaman, Daniel P; Rowcliffe, Eric; Kinkead, Heather; Nohria, Raman; Akagi, Junya; Bauer, Katherine; Du, Sean X; Whalen, Robert G; Burton, Dennis R; Zwick, Michael BThe HIV-1 envelope glycoprotein (Env) spike is challenging to study at the molecular level, due in part to its genetic variability, structural heterogeneity and lability. However, the extent of lability in Env function, particularly for primary isolates across clades, has not been explored. Here, we probe stability of function for variant Envs of a range of isolates from chronic and acute infection, and from clades A, B and C, all on a constant virus backbone. Stability is elucidated in terms of the sensitivity of isolate infectivity to destabilizing conditions. A heat-gradient assay was used to determine T(90) values, the temperature at which HIV-1 infectivity is decreased by 90% in 1 h, which ranged between ∼40 to 49°C (n = 34). For select Envs (n = 10), the half-lives of infectivity decay at 37°C were also determined and these correlated significantly with the T(90) (p = 0.029), though two 'outliers' were identified. Specificity in functional Env stability was also evident. For example, Env variant HIV-1(ADA) was found to be labile to heat, 37°C decay, and guanidinium hydrochloride but not to urea or extremes of pH, when compared to its thermostable counterpart, HIV-1(JR-CSF). Blue native PAGE analyses revealed that Env-dependent viral inactivation preceded complete dissociation of Env trimers. The viral membrane and membrane-proximal external region (MPER) of gp41 were also shown to be important for maintaining trimer stability at physiological temperature. Overall, our results indicate that primary HIV-1 Envs can have diverse sensitivities to functional inactivation in vitro, including at physiological temperature, and suggest that parameters of functional Env stability may be helpful in the study and optimization of native Env mimetics and vaccines.Item Open Access Genetic signatures in the envelope glycoproteins of HIV-1 that associate with broadly neutralizing antibodies.(PLoS Comput Biol, 2010-10-07) Gnanakaran, S; Daniels, MG; Bhattacharya, T; Lapedes, AS; Sethi, A; Li, M; Tang, H; Greene, K; Gao, H; Haynes, BF; Cohen, MS; Shaw, GM; Seaman, MS; Kumar, A; Gao, F; Montefiori, DC; Korber, BA steady increase in knowledge of the molecular and antigenic structure of the gp120 and gp41 HIV-1 envelope glycoproteins (Env) is yielding important new insights for vaccine design, but it has been difficult to translate this information to an immunogen that elicits broadly neutralizing antibodies. To help bridge this gap, we used phylogenetically corrected statistical methods to identify amino acid signature patterns in Envs derived from people who have made potently neutralizing antibodies, with the hypothesis that these Envs may share common features that would be useful for incorporation in a vaccine immunogen. Before attempting this, essentially as a control, we explored the utility of our computational methods for defining signatures of complex neutralization phenotypes by analyzing Env sequences from 251 clonal viruses that were differentially sensitive to neutralization by the well-characterized gp120-specific monoclonal antibody, b12. We identified ten b12-neutralization signatures, including seven either in the b12-binding surface of gp120 or in the V2 region of gp120 that have been previously shown to impact b12 sensitivity. A simple algorithm based on the b12 signature pattern was predictive of b12 sensitivity/resistance in an additional blinded panel of 57 viruses. Upon obtaining these reassuring outcomes, we went on to apply these same computational methods to define signature patterns in Env from HIV-1 infected individuals who had potent, broadly neutralizing responses. We analyzed a checkerboard-style neutralization dataset with sera from 69 HIV-1-infected individuals tested against a panel of 25 different Envs. Distinct clusters of sera with high and low neutralization potencies were identified. Six signature positions in Env sequences obtained from the 69 samples were found to be strongly associated with either the high or low potency responses. Five sites were in the CD4-induced coreceptor binding site of gp120, suggesting an important role for this region in the elicitation of broadly neutralizing antibody responses against HIV-1.Item Open Access HIV-1 envelope gp41 antibodies can originate from terminal ileum B cells that share cross-reactivity with commensal bacteria.(Cell Host Microbe, 2014-08-13) Trama, A; Moody, MA; Alam, SM; Jaeger, F; Lockwood, B; Parks, R; Lloyd, K; Stolarchuk, C; Scearce, R; Foulger, A; Marshall, D; Whitesides, J; Jeffries, T; Wiehe, K; Morris, L; Lambson, B; Soderberg, K; Hwang, K; Tomaras, G; Vandergrift, N; Jackson, KL; Roskin, K; Boyd, S; Kepler, T; Liao, H; Haynes, BMonoclonal antibodies derived from blood plasma cells of acute HIV-1-infected individuals are predominantly targeted to the HIV Env gp41 and cross-reactive with commensal bacteria. To understand this phenomenon, we examined anti-HIV responses in ileum B cells using recombinant antibody technology and probed their relationship to commensal bacteria. The dominant ileum B cell response was to Env gp41. Remarkably, a majority (82%) of the ileum anti-gp41 antibodies cross-reacted with commensal bacteria, and of those, 43% showed non-HIV-1 antigen polyreactivity. Pyrosequencing revealed shared HIV-1 antibody clonal lineages between ileum and blood. Mutated immunoglobulin G antibodies cross-reactive with both Env gp41 and microbiota could also be isolated from the ileum of HIV-1 uninfected individuals. Thus, the gp41 commensal bacterial antigen cross-reactive antibodies originate in the intestine, and the gp41 Env response in HIV-1 infection can be derived from a preinfection memory B cell pool triggered by commensal bacteria that cross-react with Env.Item Open Access HIV-1 envelope gp41 broadly neutralizing antibodies: hurdles for vaccine development.(PLoS Pathog, 2014-05) Verkoczy, Laurent; Kelsoe, Garnett; Haynes, Barton FItem Open Access Identification of autoantigens recognized by the 2F5 and 4E10 broadly neutralizing HIV-1 antibodies.(J Exp Med, 2013-02-11) Yang, Guang; Holl, T Matt; Liu, Yang; Li, Yi; Lu, Xiaozhi; Nicely, Nathan I; Kepler, Thomas B; Alam, S Munir; Liao, Hua-Xin; Cain, Derek W; Spicer, Leonard; VandeBerg, John L; Haynes, Barton F; Kelsoe, GarnettMany human monoclonal antibodies that neutralize multiple clades of HIV-1 are polyreactive and bind avidly to mammalian autoantigens. Indeed, the generation of neutralizing antibodies to the 2F5 and 4E10 epitopes of HIV-1 gp41 in man may be proscribed by immune tolerance because mice expressing the V(H) and V(L) regions of 2F5 have a block in B cell development that is characteristic of central tolerance. This developmental blockade implies the presence of tolerizing autoantigens that are mimicked by the membrane-proximal external region of HIV-1 gp41. We identify human kynureninase (KYNU) and splicing factor 3b subunit 3 (SF3B3) as the primary conserved, vertebrate self-antigens recognized by the 2F5 and 4E10 antibodies, respectively. 2F5 binds the H4 domain of KYNU which contains the complete 2F5 linear epitope (ELDKWA). 4E10 recognizes an epitope of SF3B3 that is strongly dependent on hydrophobic interactions. Opossums carry a rare KYNU H4 domain that abolishes 2F5 binding, but they retain the SF3B3 4E10 epitope. Immunization of opossums with HIV-1 gp140 induced extraordinary titers of serum antibody to the 2F5 ELDKWA epitope but little or nothing to the 4E10 determinant. Identification of structural motifs shared by vertebrates and HIV-1 provides direct evidence that immunological tolerance can impair humoral responses to HIV-1.Item Open Access Initial antibodies binding to HIV-1 gp41 in acutely infected subjects are polyreactive and highly mutated.(J Exp Med, 2011-10-24) Liao, Hua-Xin; Chen, Xi; Munshaw, Supriya; Zhang, Ruijun; Marshall, Dawn J; Vandergrift, Nathan; Whitesides, John F; Lu, Xiaozhi; Yu, Jae-Sung; Hwang, Kwan-Ki; Gao, Feng; Markowitz, Martin; Heath, Sonya L; Bar, Katharine J; Goepfert, Paul A; Montefiori, David C; Shaw, George C; Alam, S Munir; Margolis, David M; Denny, Thomas N; Boyd, Scott D; Marshal, Eleanor; Egholm, Michael; Simen, Birgitte B; Hanczaruk, Bozena; Fire, Andrew Z; Voss, Gerald; Kelsoe, Garnett; Tomaras, Georgia D; Moody, M Anthony; Kepler, Thomas B; Haynes, Barton FThe initial antibody response to HIV-1 is targeted to envelope (Env) gp41, and is nonneutralizing and ineffective in controlling viremia. To understand the origins and characteristics of gp41-binding antibodies produced shortly after HIV-1 transmission, we isolated and studied gp41-reactive plasma cells from subjects acutely infected with HIV-1. The frequencies of somatic mutations were relatively high in these gp41-reactive antibodies. Reverted unmutated ancestors of gp41-reactive antibodies derived from subjects acutely infected with HIV-1 frequently did not react with autologous HIV-1 Env; however, these antibodies were polyreactive and frequently bound to host or bacterial antigens. In one large clonal lineage of gp41-reactive antibodies, reactivity to HIV-1 Env was acquired only after somatic mutations. Polyreactive gp41-binding antibodies were also isolated from uninfected individuals. These data suggest that the majority of gp41-binding antibodies produced after acute HIV-1 infection are cross-reactive responses generated by stimulating memory B cells that have previously been activated by non-HIV-1 antigens.