Browsing by Subject "HeLa Cells"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item Open Access Chlamydia trachomatis Infection Leads to Defined Alterations to the Lipid Droplet Proteome in Epithelial Cells.(PLoS One, 2015) Saka, Hector Alex; Thompson, J Will; Chen, Yi-Shan; Dubois, Laura G; Haas, Joel T; Moseley, Arthur; Valdivia, Raphael HThe obligate intracellular bacterium Chlamydia trachomatis is a major human pathogen and a main cause of genital and ocular diseases. During its intracellular cycle, C. trachomatis replicates inside a membrane-bound vacuole termed an "inclusion". Acquisition of lipids (and other nutrients) from the host cell is a critical step in chlamydial replication. Lipid droplets (LD) are ubiquitous, ER-derived neutral lipid-rich storage organelles surrounded by a phospholipids monolayer and associated proteins. Previous studies have shown that LDs accumulate at the periphery of, and eventually translocate into, the chlamydial inclusion. These observations point out to Chlamydia-mediated manipulation of LDs in infected cells, which may impact the function and thereby the protein composition of these organelles. By means of a label-free quantitative mass spectrometry approach we found that the LD proteome is modified in the context of C. trachomatis infection. We determined that LDs isolated from C. trachomatis-infected cells were enriched in proteins related to lipid metabolism, biosynthesis and LD-specific functions. Interestingly, consistent with the observation that LDs intimately associate with the inclusion, a subset of inclusion membrane proteins co-purified with LD protein extracts. Finally, genetic ablation of LDs negatively affected generation of C. trachomatis infectious progeny, consistent with a role for LD biogenesis in optimal chlamydial growth.Item Open Access Control of cyclin B1 localization through regulated binding of the nuclear export factor CRM1.(Genes Dev, 1998-07-15) Yang, J; Bardes, ES; Moore, JD; Brennan, J; Powers, MA; Kornbluth, SActivation of the Cyclin B/Cdc2 kinase complex triggers entry into mitosis in all eukaryotic cells. Cyclin B1 localization changes dramatically during the cell cycle, precipitously transiting from the cytoplasm to the nucleus at the beginning of mitosis. Presumably, this relocalization promotes the phosphorylation of nuclear targets critical for chromatin condensation and nuclear envelope breakdown. We show here that the previously characterized cytoplasmic retention sequence of Cyclin B1, responsible for its interphase cytoplasmic localization, is actually an autonomous nuclear export sequence, capable of directing nuclear export of a heterologous protein, and able to bind specifically to the recently identified export mediator, CRM1. We propose that the observed cytoplasmic localization of Cyclin B1 during interphase reflects the equilibrium between ongoing nuclear import and rapid CRM1-mediated export. In support of this hypothesis, we found that treatment of cells with leptomycin B, which disrupted Cyclin B1-CRM1 interactions, led to a marked nuclear accumulation of Cyclin B1. In mitosis, Cyclin B1 undergoes phosphorylation at several sites, a subset of which have been proposed to play a role in Cyclin B1 accumulation in the nucleus. Both CRM1 binding and the ability to direct nuclear export were affected by mutation of these phosphorylation sites; thus, we propose that Cyclin B1 phosphorylation at the G2/M transition prevents its interaction with CRM1, thereby reducing nuclear export and facilitating nuclear accumulation.Item Open Access Differential Translocation of Host Cellular Materials into the Chlamydia trachomatis Inclusion Lumen during Chemical Fixation.(PLoS One, 2015) Kokes, Marcela; Valdivia, Raphael HChlamydia trachomatis manipulates host cellular pathways to ensure its proliferation and survival. Translocation of host materials into the pathogenic vacuole (termed 'inclusion') may facilitate nutrient acquisition and various organelles have been observed within the inclusion, including lipid droplets, peroxisomes, multivesicular body components, and membranes of the endoplasmic reticulum (ER). However, few of these processes have been documented in living cells. Here, we survey the localization of a broad panel of subcellular elements and find ER, mitochondria, and inclusion membranes within the inclusion lumen of fixed cells. However, we see little evidence of intraluminal localization of these organelles in live inclusions. Using time-lapse video microscopy we document ER marker translocation into the inclusion lumen during chemical fixation. These intra-inclusion ER elements resist a variety of post-fixation manipulations and are detectable via immunofluorescence microscopy. We speculate that the localization of a subset of organelles may be exaggerated during fixation. Finally, we find similar structures within the pathogenic vacuole of Coxiella burnetti infected cells, suggesting that fixation-induced translocation of cellular materials may occur into the vacuole of a range of intracellular pathogens.Item Open Access MicroRNA antagonism of the picornaviral life cycle: alternative mechanisms of interference.(PLoS Pathog, 2010-03-19) Kelly, Elizabeth J; Hadac, Elizabeth M; Cullen, Bryan R; Russell, Stephen JIn addition to modulating the function and stability of cellular mRNAs, microRNAs can profoundly affect the life cycles of viruses bearing sequence complementary targets, a finding recently exploited to ameliorate toxicities of vaccines and oncolytic viruses. To elucidate the mechanisms underlying microRNA-mediated antiviral activity, we modified the 3' untranslated region (3'UTR) of Coxsackievirus A21 to incorporate targets with varying degrees of homology to endogenous microRNAs. We show that microRNAs can interrupt the picornavirus life-cycle at multiple levels, including catalytic degradation of the viral RNA genome, suppression of cap-independent mRNA translation, and interference with genome encapsidation. In addition, we have examined the extent to which endogenous microRNAs can suppress viral replication in vivo and how viruses can overcome this inhibition by microRNA saturation in mouse cancer models.Item Open Access Mitochondrial fusion is regulated by Reaper to modulate Drosophila programmed cell death.(Cell Death Differ, 2011-10) Thomenius, M; Freel, CD; Horn, S; Krieser, R; Abdelwahid, E; Cannon, R; Balasundaram, S; White, K; Kornbluth, SIn most multicellular organisms, the decision to undergo programmed cell death in response to cellular damage or developmental cues is typically transmitted through mitochondria. It has been suggested that an exception is the apoptotic pathway of Drosophila melanogaster, in which the role of mitochondria remains unclear. Although IAP antagonists in Drosophila such as Reaper, Hid and Grim may induce cell death without mitochondrial membrane permeabilization, it is surprising that all three localize to mitochondria. Moreover, induction of Reaper and Hid appears to result in mitochondrial fragmentation during Drosophila cell death. Most importantly, disruption of mitochondrial fission can inhibit Reaper and Hid-induced cell death, suggesting that alterations in mitochondrial dynamics can modulate cell death in fly cells. We report here that Drosophila Reaper can induce mitochondrial fragmentation by binding to and inhibiting the pro-fusion protein MFN2 and its Drosophila counterpart dMFN/Marf. Our in vitro and in vivo analyses reveal that dMFN overexpression can inhibit cell death induced by Reaper or γ-irradiation. In addition, knockdown of dMFN causes a striking loss of adult wing tissue and significant apoptosis in the developing wing discs. Our findings are consistent with a growing body of work describing a role for mitochondrial fission and fusion machinery in the decision of cells to die.Item Open Access Suppression of DNA-damage checkpoint signaling by Rsk-mediated phosphorylation of Mre11.(Proc Natl Acad Sci U S A, 2013-12-17) Chen, Chen; Zhang, Liguo; Huang, Nai-Jia; Huang, Bofu; Kornbluth, SallyAtaxia telangiectasia mutant (ATM) is an S/T-Q-directed kinase that is critical for the cellular response to double-stranded breaks (DSBs) in DNA. Following DNA damage, ATM is activated and recruited by the MRN protein complex [meiotic recombination 11 (Mre11)/DNA repair protein Rad50/Nijmegen breakage syndrome 1 proteins] to sites of DNA damage where ATM phosphorylates multiple substrates to trigger cell-cycle arrest. In cancer cells, this regulation may be faulty, and cell division may proceed even in the presence of damaged DNA. We show here that the ribosomal s6 kinase (Rsk), often elevated in cancers, can suppress DSB-induced ATM activation in both Xenopus egg extracts and human tumor cell lines. In analyzing each step in ATM activation, we have found that Rsk targets loading of MRN complex components onto DNA at DSB sites. Rsk can phosphorylate the Mre11 protein directly at S676 both in vitro and in intact cells and thereby can inhibit the binding of Mre11 to DNA with DSBs. Accordingly, mutation of S676 to Ala can reverse inhibition of the response to DSBs by Rsk. Collectively, these data point to Mre11 as an important locus of Rsk-mediated checkpoint inhibition acting upstream of ATM activation.Item Open Access The exon junction complex component Magoh controls brain size by regulating neural stem cell division.(Nat Neurosci, 2010-05) Silver, Debra L; Watkins-Chow, Dawn E; Schreck, Karisa C; Pierfelice, Tarran J; Larson, Denise M; Burnetti, Anthony J; Liaw, Hung-Jiun; Myung, Kyungjae; Walsh, Christopher A; Gaiano, Nicholas; Pavan, William JBrain structure and size require precise division of neural stem cells (NSCs), which self-renew and generate intermediate neural progenitors (INPs) and neurons. The factors that regulate NSCs remain poorly understood, and mechanistic explanations of how aberrant NSC division causes the reduced brain size seen in microcephaly are lacking. Here we show that Magoh, a component of the exon junction complex (EJC) that binds RNA, controls mouse cerebral cortical size by regulating NSC division. Magoh haploinsufficiency causes microcephaly because of INP depletion and neuronal apoptosis. Defective mitosis underlies these phenotypes, as depletion of EJC components disrupts mitotic spindle orientation and integrity, chromosome number and genomic stability. In utero rescue experiments showed that a key function of Magoh is to control levels of the microcephaly-associated protein Lis1 during neurogenesis. Our results uncover requirements for the EJC in brain development, NSC maintenance and mitosis, thereby implicating this complex in the pathogenesis of microcephaly.Item Open Access The Trim39 ubiquitin ligase inhibits APC/CCdh1-mediated degradation of the Bax activator MOAP-1.(J Cell Biol, 2012-04-30) Huang, Nai-Jia; Zhang, Liguo; Tang, Wanli; Chen, Chen; Yang, Chih-Sheng; Kornbluth, SallyProapoptotic Bcl-2 family members, such as Bax, promote release of cytochrome c from mitochondria, leading to caspase activation and cell death. It was previously reported that modulator of apoptosis protein 1 (MOAP-1), an enhancer of Bax activation induced by DNA damage, is stabilized by Trim39, a protein of unknown function. In this paper, we show that MOAP-1 is a novel substrate of the anaphase-promoting complex (APC/C(Cdh1)) ubiquitin ligase. The influence of Trim39 on MOAP-1 levels stems from the ability of Trim39 (a RING domain E3 ligase) to directly inhibit APC/C(Cdh1)-mediated protein ubiquitylation. Accordingly, small interfering ribonucleic acid-mediated knockdown of Cdh1 stabilized MOAP-1, thereby enhancing etoposide-induced Bax activation and apoptosis. These data identify Trim39 as a novel APC/C regulator and provide an unexpected link between the APC/C and apoptotic regulation via MOAP-1.Item Open Access Transfer of human chromosomes via human minisegregant cells into mouse cells and the quantitation of the expression of hypoxanthine phosphoribosyltransferase in the hybrids.(J Cell Sci, 1978-04) Tourian, A; Johnson, RT; Burg, K; Nicolson, SW; Sperling, KThe behaviour of human cells arrested in mitosis can be severely perturbed so as to generate numerous small minisegregants containing very few chromosomes. These cells can be separated according to size and DNA content and fused with intact cells. In this paper we describe the production and some properties of proliferating cell hybrids generated by fusion of human minisegregant cells derived from a HeLa strain with mouse A9 cells deficient in hypoxanthine phosphoribosyltransferase (HPRT, EC 2.4.2.8). The hybrids were shown to contain up to 10 human chromosomes including a single X. Independently derived hybrid clones were quantitatively characterized and compared with the parental phenotypes with respect to HPRT. Human isozymes of each of the 3 enzymes HPRT, glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and phosphoglycerate kinase (EC 2,7.2.3) were found. Tests to evaluate both structure and function of HPRT were utilized. The specific activity of HPRT of more than 10 hybrids tested was approximately 10% that of the HeLa parent. Structural characterization of HPRT from hybrid cells as evidenced by heat inactivation and electrophoretic mobility results in a 'human-like' phenotype. Functional characterization of parental HPRT results in kinetic constants for cofactor and substrate which do not permit distinction of human and of human and mouse enzymes; HPRT from the minisegregant hybrids had normal kinetic constants. The reduced specific activity of HPRT in the hybrids is discussed in terms of the inability of the mouse environment to regulate the full expression of the human structural gene.