Browsing by Subject "Health Sciences, Ophthalmology"
- Results Per Page
- Sort Options
Item Open Access Development of Coherence-Gated and Resolution-Multiplexed Optical Imaging Systems(2010) Tao, Yuankai KennyOptical interrogation techniques are particularly well-suited for imaging tissue morphology, biological dynamics, and disease pathogenesis by providing noninvasive access to subcellular-resolution diagnostic information. State-of-the-art spectral domain optical coherence tomography (SDOCT) systems provide real-time optical biopsies of in vivo tissue, and have demonstrated clinical potential, particularly for applications in ophthalmology.
Recent advances in microscopy and endoscopy have led to improved resolution and compact optical designs, beyond those of conventional imaging systems. Application of encoded and multiplexed illumination and detection schemes may allow for the development of optical tools that surpass classical imaging limitations. Furthermore, complementary technologies can be combined to create multimodal optical imaging tools with advantages over current-generation systems.
In this dissertation, the development of coherence-gated and resolution-multiplexed technologies, aimed towards applications in human vitreoretinal imaging is described. Technology development in coherence-gated systems included increasing the imaging range of SDOCT by removing the complex conjugate artifact, improving acquisition speed using a scanning spectrometer design and a two-dimensional detector array, and hardware and algorithmic implementations that facilitated imaging of Doppler flow.
Structured illumination microscopy techniques were applied for resolution enhancement, and a spectrally encoded ophthalmic imaging system was developed for en face confocal fundus imaging through a single-mode fiber. These devices were resolution-multiplexed extensions of existing ophthalmic imaging devices, such as scanning laser ophthalmoscopes (SLO), which demonstrated improved resolution and more compact optical designs as compared to their conventional counterparts.
Finally, several multimodal ophthalmic diagnostic tools were developed that combined the advantages of OCT with existing imaging devices. These included a combined SLO-OCT system and a vitreoretinal surgical microscope combined with OCT. These devices allowed for concurrent ophthalmic imaging using complementary modalities for improved visualization and clinical utility.
Item Open Access Functional Spectral Domain Optical Coherence Tomography Imaging(2009) Bower, Bradley A.Spectral Domain Optical Coherence Tomography (SDOCT) is a high-speed, high resolution imaging modality capable of structural and functional resolution of tissue microstructure. SDOCT fills a niche between histology and ultrasound imaging, providing non-contact, non-invasive backscattering amplitude and phase from a sample. Due to the translucent nature of the tissue, ophthalmic imaging is an ideal space for SDOCT imaging.
Structural imaging of the retina has provided new insights into ophthalmic disease. The phase component of SDOCT images remains largely underexplored, though. While Doppler SDOCT has been explored in a research setting, it remains to catch on in the clinic. Other, functional exploitations of the phase are possible and necessary to expand the utility of SDOCT. Spectral Domain Phase Microscopy (SDPM) is an extension of SDOCT that is capable of resolving sub-wavelength displacements within a focal volume. Application of sub-wavelength displacement measurement ophthalmic imaging could provide a new method for imaging of optophysiology.
This body of work encompasses both hardware and software design and development for implementation of SDOCT. Structural imaging was proven in both the lab and the clinic. Coarse phase changes associated with Doppler flow frequency shifts were recorded and a study was conducted to validate Doppler measurement. Fine phase changes were explored through SDPM applications. Preliminary optophysiology data was acquired to study the potential of sub-wavelength measurements in the retina. To remove the complexity associated with in-vivo human retinal imaging, a first principles approach using isolated nerve samples was applied using standard SDPM and a depth-encoded technique for measuring conduction velocity.
Results from amplitude as well as both coarse and fine phase processing are presented. In-vivo optophysiology using SDPM is a promising avenue for exploration, and projects furthering or extending this body of work are discussed.