Browsing by Subject "Heart-Assist Devices"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Chronic in vivo testing of the Penn State infant ventricular assist device.(ASAIO journal (American Society for Artificial Internal Organs : 1992), 2012-01) Weiss, William J; Carney, Elizabeth L; Clark, J Brian; Peterson, Rebecca; Cooper, Timothy K; Nifong, Thomas P; Siedlecki, Christopher A; Hicks, Dennis; Doxtater, Bradley; Lukic, Branka; Yeager, Eric; Reibson, John; Cysyk, Joshua; Rosenberg, Gerson; Pierce, William SThe Penn State Infant Ventricular Assist Device (VAD) is a 12-14 ml stroke volume pneumatically actuated pump, with custom Björk-Shiley monostrut valves, developed under the National Heart, Lung, and Blood Institute Pediatric Circulatory Support program. In this report, we describe the seven most recent chronic animal studies of the Infant VAD in the juvenile ovine model, with a mean body weight of 23.5 ± 4.1 kg. The goal of 4-6 weeks survival was achieved in five of seven studies, with support duration ranging from 5 to 41 days; mean 26.1 days. Anticoagulation was accomplished using unfractionated heparin, and study animals were divided into two protocol groups: the first based on a target activated partial thromboplastin time of 1.5-2 times normal, and a second group using a target thromboelastography R-time of two times normal. The second group required significantly less heparin, which was verified by barely detectable heparin activity (anti-Xa). In both groups, there was no evidence of thromboembolism except in one animal with a chronic infection and fever. Device thrombi were minimal and were further reduced by introduction of the custom valve. These results are consistent with results of adult VAD testing in animals and are encouraging given the extremely low levels of anticoagulation in the second group.Item Open Access Commentary: Shunted single-ventricle neonatal ventricular-assist device support: Are we nearing a consensus strategy?(The Journal of thoracic and cardiovascular surgery, 2019-08) Andersen, Nicholas D; Kirmani, Sonya; Turek, Joseph WItem Open Access Mechanical circulatory support for end-stage heart failure in repaired and palliated congenital heart disease.(Current cardiology reviews, 2011-05) Clark, Joseph B; Pauliks, Linda B; Myers, John L; Undar, AkifApproximately one in one hundred children is born with congenital heart disease. Most can be managed with corrective or palliative surgery but a small group will develop severe heart failure, leaving cardiac transplantation as the ultimate treatment option. Unfortunately, due to the inadequate number of available donor organs, only a small number of patients can benefit from this therapy, and mortality remains high for pediatric patients awaiting heart transplantation, especially compared to adults. The purpose of this review is to describe the potential role of mechanical circulatory support in this context and to review current experience. For patients with congenital heart disease, ventricular assist devices are most commonly used as a bridge to cardiac transplantation, an application which has been shown to have several important advantages over medical therapy alone or support with extracorporeal membrane oxygenation, including improved survival to transplant, less exposure to blood products with less immune sensitization, and improved organ function. While these devices may improve wait list mortality, the chronic shortage of donor organs for children is likely to remain a problem into the foreseeable future. Therefore, there is great interest in the development of mechanical ventricular assist devices as potential destination therapy for congenital heart disease patients with end-stage heart failure. This review first discusses the experience with the currently available ventricular assist devices in children with congenital heart disease, and then follows to discuss what devices are under development and may reach the bedside soon.