Browsing by Subject "Hemagglutinin Glycoproteins, Influenza Virus"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access A Prevalent Focused Human Antibody Response to the Influenza Virus Hemagglutinin Head Interface.(mBio, 2021-06) McCarthy, Kevin R; Lee, Jiwon; Watanabe, Akiko; Kuraoka, Masayuki; Robinson-McCarthy, Lindsey R; Georgiou, George; Kelsoe, Garnett; Harrison, Stephen CNovel animal influenza viruses emerge, initiate pandemics, and become endemic seasonal variants that have evolved to escape from prevalent herd immunity. These processes often outpace vaccine-elicited protection. Focusing immune responses on conserved epitopes may impart durable immunity. We describe a focused, protective antibody response, abundant in memory and serum repertoires, to a conserved region at the influenza virus hemagglutinin (HA) head interface. Structures of 11 examples, 8 reported here, from seven human donors demonstrate the convergence of responses on a single epitope. The 11 are genetically diverse, with one class having a common, IGκV1-39, light chain. All of the antibodies bind HAs from multiple serotypes. The lack of apparent genetic restriction and potential for elicitation by more than one serotype may explain their abundance. We define the head interface as a major target of broadly protective antibodies with the potential to influence the outcomes of influenza virus infection. IMPORTANCE The rapid appearance of mutations in circulating human influenza viruses and selection for escape from herd immunity require prediction of likely variants for an annual updating of influenza vaccines. The identification of human antibodies that recognize conserved surfaces on the influenza virus hemagglutinin (HA) has prompted efforts to design immunogens that might selectively elicit such antibodies. The recent discovery of a widely prevalent antibody response to the conserved interface between two HA "heads" (the globular, receptor-binding domains at the apex of the spike-like trimer) has added a new target for these efforts. We report structures of eight such antibodies, bound with HA heads, and compare them with each other and with three others previously described. Although genetically diverse, they all converge on a common binding site. The analysis here can guide immunogen design for preclinical trials.Item Open Access H3N2 influenza infection elicits more cross-reactive and less clonally expanded anti-hemagglutinin antibodies than influenza vaccination.(PloS one, 2011-01) Moody, M Anthony; Zhang, Ruijun; Walter, Emmanuel B; Woods, Christopher W; Ginsburg, Geoffrey S; McClain, Micah T; Denny, Thomas N; Chen, Xi; Munshaw, Supriya; Marshall, Dawn J; Whitesides, John F; Drinker, Mark S; Amos, Joshua D; Gurley, Thaddeus C; Eudailey, Joshua A; Foulger, Andrew; DeRosa, Katherine R; Parks, Robert; Meyerhoff, R Ryan; Yu, Jae-Sung; Kozink, Daniel M; Barefoot, Brice E; Ramsburg, Elizabeth A; Khurana, Surender; Golding, Hana; Vandergrift, Nathan A; Alam, S Munir; Tomaras, Georgia D; Kepler, Thomas B; Kelsoe, Garnett; Liao, Hua-Xin; Haynes, Barton FDuring the recent H1N1 influenza pandemic, excess morbidity and mortality was seen in young but not older adults suggesting that prior infection with influenza strains may have protected older subjects. In contrast, a history of recent seasonal trivalent vaccine in younger adults was not associated with protection.To study hemagglutinin (HA) antibody responses in influenza immunization and infection, we have studied the day 7 plasma cell repertoires of subjects immunized with seasonal trivalent inactivated influenza vaccine (TIV) and compared them to the plasma cell repertoires of subjects experimentally infected (EI) with influenza H3N2 A/Wisconsin/67/2005. The majority of circulating plasma cells after TIV produced influenza-specific antibodies, while most plasma cells after EI produced antibodies that did not react with influenza HA. While anti-HA antibodies from TIV subjects were primarily reactive with single or few HA strains, anti-HA antibodies from EI subjects were isolated that reacted with multiple HA strains. Plasma cell-derived anti-HA antibodies from TIV subjects showed more evidence of clonal expansion compared with antibodies from EI subjects. From an H3N2-infected subject, we isolated a 4-member clonal lineage of broadly cross-reactive antibodies that bound to multiple HA subtypes and neutralized both H1N1 and H3N2 viruses. This broad reactivity was not detected in post-infection plasma suggesting this broadly reactive clonal lineage was not immunodominant in this subject.The presence of broadly reactive subdominant antibody responses in some EI subjects suggests that improved vaccine designs that make broadly reactive antibody responses immunodominant could protect against novel influenza strains.