Browsing by Subject "Hemophilia A"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Activated Coagulation Time and Hepcon Protamine Titration Device to Manage Unfractionated Heparin During Cardiopulmonary Bypass in a Hemophilia A Patient on Emicizumab.(Journal of cardiothoracic and vascular anesthesia, 2021-11) Isaacs, James; Welsby, Ian J; Schroder, Jacob N; Onwuemene, Oluwatoyosi AIn the perioperative management of patients with hemophilia A, emicizumab prevents the accurate measurement of common clotting assays, including the activated clotting time (ACT), which is essential for high-dose heparin monitoring during cardiopulmonary bypass surgery. The authors describe the successful perioperative management of a hemophilia A patient on maintenance emicizumab who, following a non-ST myocardial infarction, underwent cardiopulmonary bypass grafting surgery with heparin monitoring using both the ACT and heparin levels from the Hepcon protamine titration device. Postoperatively, the patient was transitioned to recombinant factor VIII replacement therapy. In hemophilia A patients on emicizumab who require heparin titration on cardiopulmonary bypass surgery, the ACT, combined with Hepcon heparin levels, may be used to complete the surgery successfully without excessive bleeding or morbidity.Item Open Access The characterization of twenty sequenced human genomes.(PLoS Genet, 2010-09-09) Pelak, Kimberly; Shianna, Kevin V; Ge, Dongliang; Maia, Jessica M; Zhu, Mingfu; Smith, Jason P; Cirulli, Elizabeth T; Fellay, Jacques; Dickson, Samuel P; Gumbs, Curtis E; Heinzen, Erin L; Need, Anna C; Ruzzo, Elizabeth K; Singh, Abanish; Campbell, C Ryan; Hong, Linda K; Lornsen, Katharina A; McKenzie, Alexander M; Sobreira, Nara LM; Hoover-Fong, Julie E; Milner, Joshua D; Ottman, Ruth; Haynes, Barton F; Goedert, James J; Goldstein, David BWe present the analysis of twenty human genomes to evaluate the prospects for identifying rare functional variants that contribute to a phenotype of interest. We sequenced at high coverage ten "case" genomes from individuals with severe hemophilia A and ten "control" genomes. We summarize the number of genetic variants emerging from a study of this magnitude, and provide a proof of concept for the identification of rare and highly-penetrant functional variants by confirming that the cause of hemophilia A is easily recognizable in this data set. We also show that the number of novel single nucleotide variants (SNVs) discovered per genome seems to stabilize at about 144,000 new variants per genome, after the first 15 individuals have been sequenced. Finally, we find that, on average, each genome carries 165 homozygous protein-truncating or stop loss variants in genes representing a diverse set of pathways.