Browsing by Subject "Heparan sulfate"
- Results Per Page
- Sort Options
Item Open Access Heparan Sulfate Signaling in Neuroblastoma Pathogenesis and Differentiation Therapy(2015) Knelson, Erik HenryGrowth factors and their receptors coordinate neuronal differentiation during development, yet their roles in the embyronal tumor neuroblastoma, where differentiation is a validated treatment strategy, remain unclear. The neuroblastoma tumor stroma is thought to suppress neuroblast growth via release of soluble differentiating factors. Here we identify critical components of the differentiating stroma secretome and describe preclinical testing of a novel therapeutic strategy based on their mechanism of action.
Expression of heparan sulfate proteoglycans (HSPGs), including TβRIII, GPC1, GPC3, SDC3, and SDC4, is decreased in neuroblastoma, high in the stroma, and suppresses tumor growth. High expression of TβRIII, GPC1, and SDC3 is associated with improved patient prognosis. HSPGs signal via heparan sulfate binding to FGFR1 and FGF2, which leads to phosphorylation of FGFR1 and Erk MAPK, and upregulation of the transcription factor inhibitor of DNA binding 1 (Id1). Surface expression and treatment with soluble HSPGs promotes neuroblast differentiation via this signaling complex. Expression of individual HSPGs positively correlates with Id1 expression in neuroblastoma patient samples and multivariate regression demonstrates that expression of HSPGs as a group positively correlates with Id1 expression, underscoring the clinical relevance of this pathway. HSPGs also enhance differentiation from FGF2 released by the stroma and FGF2 is identified as a potential serum prognostic biomarker in neuroblastoma patients.
The anticoagulant heparin has similar differentiating effects to HSPGs, decreasing neuroblast proliferation and reducing tumor growth while extending survival in an orthotopic xenograft model of neuroblastoma. Dissection of individual sulfation sites identifies 2-O-, 3-O-de-sulfated heparin (ODSH) as a differentiating agent that suppresses orthotopic xenograft growth and metastasis in two models while avoiding anticoagulation. These studies form the preclinical rationale for a multicenter clinical trial currently being proposed.
In conclusion, these studies translate mechanistic insights in neuroblast HSPG function to identify heparins as differentiating agents for clinical development in neuroblastoma, while demonstrating that tumor stroma biology can inform design of targeted molecular therapeutics.
Item Open Access The Role of Stromal-Derived Factors in Neuroblastoma Differentiation(2016) Gaviglio, Angela LNeuroblastoma is a pediatric cancer arising from undifferentiated neural crest-derived precursor cells. Treatment strategies for neuroblastoma aim to promote neuroblast differentiation, however current therapies available are only modestly effective. The tumor stroma contributes to the suppression of tumor growth by releasing soluble factors that act to promote neuroblast differentiation, though the precise factors released and their mechanism of action in neuroblastoma remains unclear. Here, we identify a novel component of the differentiating stroma secretome and harness stroma biology to inform the use of a combination therapy for neuroblastoma treatment.
HBEGF expression is decreased in neuroblastoma compared to benign disease, correlating to an increase in mortality. HBEGF protein is expressed only in stromal compartments of tumor specimens, with tissue from late-stage disease containing very little stroma or HBEGF. Addition of soluble HBEGF to neuroblastoma cell lines leads to increased neuroblast differentiation and decreased proliferation. Heparan sulfate proteoglycans (HSPGs) and heparin derivatives further enhance HBEGF-induced differentiation by forming a complex with the epidermal growth factor receptor (EGFR), leading to activation of the ERK1/2 and STAT3 pathways and upregulation of the inhibitor of DNA binding 1 transcription factor.
Expression of the type III TGF-β receptor (TβRIII), an HSPG, is epigenetically regulated in neuroblastoma cells via direct binding of the N-Myc transcription factor to Sp-1 sites on the TβRIII promoter. Analysis of patient microarray data demonstrate that other members of the differentiating stroma secretome, including HBEGF and EGFR, are positively correlated with TβRIII expression, suggesting that these proteins may be co-regulated. Treatment with inhibitors aimed at blocking N-Myc function, including inhibitors of histone deacetylases, DNA methyltransferases (DNMTs), and aurora kinase A (AurkA) can promote neuroblast differentiation and decrease proliferation. The combination of the DNMT inhibitor decitabine with the AurkA inhibitor MLN8237 enhances differentiation and reduces proliferation compared to either agent alone. Importantly, the combination of clinically achievable doses of these targeted agents dramatically reduces tumor growth in orthotopic xenograft models of neuroblastoma, identifying a novel combination therapy that may benefit children with this disease.
In conclusion, these studies dissect the tumor microenvironment to identify an important member of the differentiating stroma secretome, while also revealing a combination therapy for clinical development that has the potential to decrease adverse side effects and increase effectiveness of neuroblastoma treatment.