Browsing by Subject "Herbivory"
Results Per Page
Sort Options
Item Open Access Ecological And Evolutionary Interactions Among Plant Resistance, Herbivores, And Predators(2006-11-28) Bartlett, Ryan PaulTo understand how plant defensive traits will evolve, we need to consider the biotic context for plant-herbivore interactions. I investigated how predators affect selection on defensive traits in plants. First, I established the timing of resistance in three soybean genotypes. Next, I examined the combined effects of resistance and predators on plant fitness. I reared Mexican bean beetles (MBBs) with or without spined soldier bugs (SSBs) on soybeans with constitutive resistance (CR) or no resistance (NR). SSBs fed more on MBBs that fed on NR than on CR plants, and this translated into an increased fitness benefit from predators for NR plants over CR plants. Selection for some types of resistance in plants should thus be stronger with lower predation rates. Similarly, I reared MBBs with or without SSBs on soybeans with early induced resistance (EI), late induced resistance (LI), or CR. SSBs fed more on MBBs reared on LI plants than on beetles raised on CR plants, but no more on beetles reared on EI plants than on beetles reared on CR plants. LI plants were the only of the three soybean varieties to receive a fitness benefit from predators, which could help explain the evolution of this type of plant defense. The results of both experiments also suggest that predator introductions may be more beneficial to LI or NR crop plants than EI or CR crops. Finally, I present a model that determines the optimum amount of induced resistance (IR) and CR for a plant growing with and without neighbors. Unlike earlier models, our plants have a probability of being attacked that is modified by short- and long-term feedback of plant defenses to herbivores. Higher costs of defense favor IR over CR, while increasing herbivore attack rates or increasing the overall effectiveness of defense results in more CR. Plants with neighbors might be selected to evolve higher or lower levels of CR than if they were growing alone. Adding neighbors also selects for more mixed induced/constitutive strategies for all parameters. Having defended neighbors could thus be part of the reason why plants have evolved such mixed defense strategies.Item Open Access Investigating Damage, Genetic Correlations, and Natural Selection to Understand Multiple Plant Defenses in Passiflora incarnata(2015) Waguespack Claytor, Aline MPlants commonly produce multiple, seemingly redundant defenses, but the reasons for this are poorly understood. The specificity of defenses to particular herbivores could drive investment in multiple defenses. Alternatively, genetic correlations between defenses could lead to their joint expression, even if possessing both defenses is non-adaptive. Plants may produce multiple defenses if putative resistance traits do not reduce damage, forcing plants to rely on tolerance of damage instead. Furthermore, resource shortages caused by herbivore damage could lead to compensatory changes in expression and selection on non-defense traits, such as floral traits. Natural selection could favor producing multiple defenses if synergism between defenses increases the benefits or decrease the costs of producing multiple defenses. Non-linear relationships between the costs and benefits of defense trait investment could also favor multiple defenses.
Passiflora incarnata (`maypop') is a perennial vine native to the southeast United States that produces both direct, physical traits (leaf toughness and trichomes) and rewards thought to function in indirect defense (extrafloral nectar in a defense mutualism with ants), along with tolerance of herbivore damage. I performed two year-long common garden experiments with clonal replicates of plants originating from two populations. I measured plant fitness, herbivore damage, and defense traits. I ran a genotypic selection analysis to determine if manipulating herbivore damage through a pesticide exclusion treatment presence mediated selection on floral traits, and if herbivore damage led to plastic changes in floral trait expression. To evaluate the role of selection in maintaining multiple defenses, I estimated fitness surfaces for pairwise combinations of defense traits and evaluated where the fitness optima were on each surface.
I found that resistance traits did not reduce herbivore damage, but plants demonstrated specific tolerance to different classes of herbivore damage. Tolerance was negatively correlated with resistance, raising the possibility that tolerance of herbivore damage instead of resistance may be the key defense in this plant, and that production of the two type of defense is constrained by underlying genetic architecture. Plants with higher levels of generalist beetle damage flowered earlier and produced proportionally more male flowers. I found linear selection for both earlier flowering and a lower proportion of male flowers in the herbivore exclusion treatment. I found that selection favored investment in multiple resistance traits. However, for two tolerance traits or one resistance and one tolerance trait, investment in only one trait was favored.
These results highlight the possibility of several mechanisms selecting for the expression of multiple traits, including non-defense traits. Resistance traits may have a non-defensive primary function in this plant, and tolerance may instead be a key defense strategy. These results also emphasize the need to consider the type of trait--resistance or tolerance--when making broad predictions about their joint expression.
Item Open Access Plant species' origin predicts dominance and response to nutrient enrichment and herbivores in global grasslands.(Nat Commun, 2015-07-15) Seabloom, Eric W; Borer, Elizabeth T; Buckley, Yvonne M; Cleland, Elsa E; Davies, Kendi F; Firn, Jennifer; Harpole, W Stanley; Hautier, Yann; Lind, Eric M; MacDougall, Andrew S; Orrock, John L; Prober, Suzanne M; Adler, Peter B; Anderson, T Michael; Bakker, Jonathan D; Biederman, Lori A; Blumenthal, Dana M; Brown, Cynthia S; Brudvig, Lars A; Cadotte, Marc; Chu, Chengjin; Cottingham, Kathryn L; Crawley, Michael J; Damschen, Ellen I; Dantonio, Carla M; DeCrappeo, Nicole M; Du, Guozhen; Fay, Philip A; Frater, Paul; Gruner, Daniel S; Hagenah, Nicole; Hector, Andy; Hillebrand, Helmut; Hofmockel, Kirsten S; Humphries, Hope C; Jin, Virginia L; Kay, Adam; Kirkman, Kevin P; Klein, Julia A; Knops, Johannes MH; La Pierre, Kimberly J; Ladwig, Laura; Lambrinos, John G; Li, Qi; Li, Wei; Marushia, Robin; McCulley, Rebecca L; Melbourne, Brett A; Mitchell, Charles E; Moore, Joslin L; Morgan, John; Mortensen, Brent; O'Halloran, Lydia R; Pyke, David A; Risch, Anita C; Sankaran, Mahesh; Schuetz, Martin; Simonsen, Anna; Smith, Melinda D; Stevens, Carly J; Sullivan, Lauren; Wolkovich, Elizabeth; Wragg, Peter D; Wright, Justin; Yang, LouieExotic species dominate many communities; however the functional significance of species' biogeographic origin remains highly contentious. This debate is fuelled in part by the lack of globally replicated, systematic data assessing the relationship between species provenance, function and response to perturbations. We examined the abundance of native and exotic plant species at 64 grasslands in 13 countries, and at a subset of the sites we experimentally tested native and exotic species responses to two fundamental drivers of invasion, mineral nutrient supplies and vertebrate herbivory. Exotic species are six times more likely to dominate communities than native species. Furthermore, while experimental nutrient addition increases the cover and richness of exotic species, nutrients decrease native diversity and cover. Native and exotic species also differ in their response to vertebrate consumer exclusion. These results suggest that species origin has functional significance, and that eutrophication will lead to increased exotic dominance in grasslands.Item Open Access Variation in Plant Response to Herbivory Underscored by Functional Traits.(PLoS One, 2016) Reese, Aspen T; Ames, Gregory M; Wright, Justin PThe effects of herbivory can shape plant communities and evolution. However, the many forms of herbivory costs and the wide variation in herbivory pressure, including across latitudinal gradients, can make predicting the effects of herbivory on different plant species difficult. Functional trait approaches may aid in contextualizing and standardizing the assessment of herbivory impacts. Here we assessed the response of 26 old-field plant species to simulated defoliation in a greenhouse setting by measuring whole plant and leaf level traits in control and treated individuals. Simulated defoliation had no significant effects on any plant traits measured. However, the baseline leaf level traits of healthy plants consistently predicted the log response ratio for these species whole plant response to defoliation. The latitudinal mid-point of species' distributions was also significantly correlated with aboveground biomass and total leaf area responses, with plants with a more northern distribution being more negatively impacted by treatment. These results indicate that even in the absence of significant overall impacts, functional traits may aid in predicting variability in plant responses to defoliation and in identifying the underlying limitations driving those responses.Item Open Access Vertebrate herbivory impacts seedling recruitment more than niche partitioning or density-dependent mortality.(Ecology, 2012-03) Clark, CJ; Poulsen, JR; Levey, DJIn tropical forests, resource-based niches and density-dependent mortality are mutually compatible mechanisms that can act simultaneously to limit seedling populations. Differences in the strengths of these mechanisms will determine their roles in maintaining species coexistence. In the first assessment of these mechanisms in a Congo Basin forest, we quantified their relative strengths and tested the extent to which density-dependent mortality is driven by the distance-dependent behavior of seed and seedling predators predicted by the Janzen-Connell hypothesis. We conducted a large-scale seed addition experiment for five randomly selected tropical tree species, caging a subset of seed addition quadrats against vertebrate predators. We then developed models to assess the mechanisms that determine seedling emergence (three months after seed addition) and survival (two years after seed addition). As predicted, both niche differentiation and density-dependent mortality limited seedling recruitment, but predation had the strongest effects on seedling emergence and survival. Seedling species responded differently to naturally occurring environmental variation among sites, including variation in light levels and soil characteristics, supporting predictions of niche-based theories of tropical tree species coexistence. The addition of higher densities of seeds into quadrats initially led to greater seedling emergence, but survival to two years decreased with seed density. Seed and seedling predation reduced recruitment below levels maintained by density-dependent mortality, an indication that predators largely determine the population size of tree seedlings. Seedling recruitment was unrelated to the distance to or density of conspecific adult trees, suggesting that recruitment patterns are generated by generalist vertebrate herbivores rather than the specialized predators predicted by the Janzen-Connell hypothesis. If the role of seed and seedling predation in limiting seedling recruitment is a general phenomenon, then the relative abundances of tree species might largely depend on species-specific adaptations to avoid, survive, and recover from damage induced by vertebrate herbivores. Likewise, population declines of herbivorous vertebrate species (many of which are large and hunted) may trigger shifts in species composition of tropical forests.