Browsing by Subject "Heterografts"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access A Heterotopic Xenograft Model of Human Airways for Investigating Fibrosis in Asthma.(American journal of respiratory cell and molecular biology, 2017-03) Hackett, Tillie-Louise; Ferrante, Sarah C; Hoptay, Claire E; Engelhardt, John F; Ingram, Jennifer L; Zhang, Yulong; Alcala, Sarah E; Shaheen, Furquan; Matz, Ethan; Pillai, Dinesh K; Freishtat, Robert JLimited in vivo models exist to investigate the lung airway epithelial role in repair, regeneration, and pathology of chronic lung diseases. Herein, we introduce a novel animal model in asthma-a xenograft system integrating a differentiating human asthmatic airway epithelium with an actively remodeling rodent mesenchyme in an immunocompromised murine host. Human asthmatic and nonasthmatic airway epithelial cells were seeded into decellularized rat tracheas. Tracheas were ligated to a sterile cassette and implanted subcutaneously in the flanks of nude mice. Grafts were harvested at 2, 4, or 6 weeks for tissue histology, fibrillar collagen, and transforming growth factor-β activation analysis. We compared immunostaining in these xenografts to human lungs. Grafted epithelial cells generated a differentiated epithelium containing basal, ciliated, and mucus-expressing cells. By 4 weeks postengraftment, asthmatic epithelia showed decreased numbers of ciliated cells and decreased E-cadherin expression compared with nonasthmatic grafts, similar to human lungs. Grafts seeded with asthmatic epithelial cells had three times more fibrillar collagen and induction of transforming growth factor-β isoforms at 6 weeks postengraftment compared with nonasthmatic grafts. Asthmatic epithelium alone is sufficient to drive aberrant mesenchymal remodeling with fibrillar collagen deposition in asthmatic xenografts. Moreover, this xenograft system represents an advance over current asthma models in that it permits direct assessment of the epithelial-mesenchymal trophic unit.Item Open Access A Transcriptional Signature Identifies LKB1 Functional Status as a Novel Determinant of MEK Sensitivity in Lung Adenocarcinoma.(Cancer research, 2017-01) Kaufman, Jacob M; Yamada, Tadaaki; Park, Kyungho; Timmers, Cynthia D; Amann, Joseph M; Carbone, David PLKB1 is a commonly mutated tumor suppressor in non-small cell lung cancer that exerts complex effects on signal transduction and transcriptional regulation. To better understand the downstream impact of loss of functional LKB1, we developed a transcriptional fingerprint assay representing this phenotype. This assay was predictive of LKB1 functional loss in cell lines and clinical specimens, even those without detected sequence alterations in the gene. In silico screening of drug sensitivity data identified putative LKB1-selective drug candidates, revealing novel associations not apparent from analysis of LKB1 mutations alone. Among the candidates, MEK inhibitors showed robust association with signature expression in both training and testing datasets independent of RAS/RAF mutations. This susceptibility phenotype is directly altered by RNA interference-mediated LKB1 knockdown or by LKB1 re-expression into mutant cell lines and is readily observed in vivo using a xenograft model. MEK sensitivity is dependent on LKB1-induced changes in AKT and FOXO3 activation, consistent with genomic and proteomic analyses of LKB1-deficient lung adenocarcinomas. Our findings implicate the MEK pathway as a potential therapeutic target for LKB1-deficient cancers and define a practical NanoString biomarker to identify functional LKB1 loss. Cancer Res; 77(1); 153-63. ©2016 AACR.Item Open Access Mesenchymal stromal cells reprogram monocytes and macrophages with processing bodies.(Stem cells (Dayton, Ohio), 2021-01) Min, Hyunjung; Xu, Li; Parrott, Roberta; Overall, Christopher C; Lillich, Melina; Rabjohns, Emily M; Rampersad, Rishi R; Tarrant, Teresa K; Meadows, Norin; Fernandez-Castaneda, Anthony; Gaultier, Alban; Kurtzberg, Joanne; Filiano, Anthony JMesenchymal stromal cells (MSCs) are widely used in clinical trials because of their ability to modulate inflammation. The success of MSCs has been variable over 25 years, most likely due to an incomplete understanding of their mechanism. After MSCs are injected, they traffic to the lungs and other tissues where they are rapidly cleared. Despite being cleared, MSCs suppress the inflammatory response in the long term. Using human cord tissue-derived MSCs (hCT-MSCs), we demonstrated that hCT-MSCs directly interact and reprogram monocytes and macrophages. After engaging hCT-MSCs, monocytes and macrophages engulfed cytoplasmic components of live hCT-MSCs, then downregulated gene programs for antigen presentation and costimulation, and functionally suppressed the activation of helper T cells. We determined that low-density lipoprotein receptor-related proteins on monocytes and macrophages mediated the engulfment of hCT-MSCs. Since a large amount of cellular information can be packaged in cytoplasmic RNA processing bodies (p-bodies), we generated p-body deficient hCT-MSCs and confirmed that they failed to reprogram monocytes and macrophages in vitro and in vivo. hCT-MSCs suppressed an inflammatory response caused by a nasal lipopolysaccharide challenge. Although both control and p-body deficient hCT-MSCs were engulfed by infiltrating lung monocytes and macrophages, p-body deficient hCT-MSCs failed to suppress inflammation and downregulate MHC-II. Overall, we identified a novel mechanism by which hCT-MSCs indirectly suppressed a T-cell response by directly interacting and reprogramming monocytes and macrophages via p-bodies. The results of this study suggest a novel mechanism for how MSCs can reprogram the inflammatory response and have long-term effects to suppress inflammation.Item Open Access Molecular characterization of chordoma xenografts generated from a novel primary chordoma cell source and two chordoma cell lines.(J Neurosurg Spine, 2014-09) Karikari, Isaac O; Gilchrist, Christopher L; Jing, Liufang; Alcorta, David A; Chen, Jun; Richardson, William J; Gabr, Mostafa A; Bell, Richard D; Kelley, Michael J; Bagley, Carlos A; Setton, Lori AOBJECT: Chordoma cells can generate solid-like tumors in xenograft models that express some molecular characteristics of the parent tumor, including positivity for brachyury and cytokeratins. However, there is a dearth of molecular markers that relate to chordoma tumor growth, as well as the cell lines needed to advance treatment. The objective in this study was to isolate a novel primary chordoma cell source and analyze the characteristics of tumor growth in a mouse xenograft model for comparison with the established U-CH1 and U-CH2b cell lines. METHODS: Primary cells from a sacral chordoma, called "DVC-4," were cultured alongside U-CH1 and U-CH2b cells for more than 20 passages and characterized for expression of CD24 and brachyury. While brachyury is believed essential for driving tumor formation, CD24 is associated with healthy nucleus pulposus cells. Each cell type was subcutaneously implanted in NOD/SCID/IL2Rγ(null) mice. The percentage of solid tumors formed, time to maximum tumor size, and immunostaining scores for CD24 and brachyury (intensity scores of 0-3, heterogeneity scores of 0-1) were reported and evaluated to test differences across groups. RESULTS: The DVC-4 cells retained chordoma-like morphology in culture and exhibited CD24 and brachyury expression profiles in vitro that were similar to those for U-CH1 and U-CH2b. Both U-CH1 and DVC-4 cells grew tumors at rates that were faster than those for U-CH2b cells. Gross tumor developed at nearly every site (95%) injected with U-CH1 and at most sites (75%) injected with DVC-4. In contrast, U-CH2b cells produced grossly visible tumors in less than 50% of injected sites. Brachyury staining was similar among tumors derived from all 3 cell types and was intensely positive (scores of 2-3) in a majority of tissue sections. In contrast, differences in the pattern and intensity of staining for CD24 were noted among the 3 types of cell-derived tumors (p < 0.05, chi-square test), with evidence of intense and uniform staining in a majority of U-CH1 tumor sections (score of 3) and more than half of the DVC-4 tumor sections (scores of 2-3). In contrast, a majority of sections from U-CH2b cells stained modestly for CD24 (scores of 1-2) with a predominantly heterogeneous staining pattern. CONCLUSIONS: This is the first report on xenografts generated from U-CH2b cells in which a low tumorigenicity was discovered despite evidence of chordoma-like characteristics in vitro. For tumors derived from a primary chordoma cell and U-CH1 cell line, similarly intense staining for CD24 was observed, which may correspond to their similar potential to grow tumors. In contrast, U-CH2b tumors stained less intensely for CD24. These results emphasize that many markers, including CD24, may be useful in distinguishing among chordoma cell types and their tumorigenicity in vivo.