Browsing by Subject "High Frequency data"
Results Per Page
Sort Options
Item Open Access Beta Estimation Using High Frequency Data(2011-04-18) Ryu, AngelaUsing high frequency stock price data in estimating nancial measures often causes serious distortion. It is due to the existence of the market microstructure noise, the lag of the observed price to the underlying value due to market friction. The adverse e ect of the noise can be avoided by choosing an appropriate sampling frequency. In this study, using mean square error as the measure of accuracy in beta estimation, the optimal pair of sampling frequency and the trailing window was empirically found to be as short as 1 minute and 1 week, respectively. This surprising result may be due to the low market noise resulting from its high liquidity and the econometric properties of the errors-in-variables model. Moreover, the realized beta obtained from the optimal pair outperformed the constant beta from the CAPM when overnight returns were excluded. The comparison further strengthens the argument that the underlying beta is time-varying.Item Open Access Copulas for High Dimensions: Models, Estimation, Inference, and Applications(2014) Oh, Dong HwanThe dissertation consists of four chapters that concern topics on copulas for high dimensions. Chapter 1 proposes a new general model for high dimension joint distributions of asset returns that utilizes high frequency data and copulas. The dependence between returns is decomposed into linear and nonlinear components, which enables the use of high frequency data to accurately measure and forecast linear dependence, and the use of a new class of copulas designed to capture nonlinear dependence among the resulting linearly uncorrelated residuals. Estimation of the new class of copulas is conducted using a composite likelihood, making the model feasible even for hundreds of variables. A realistic simulation study verifies that multistage estimation with composite likelihood results in small loss in efficiency and large gain in computation speed.
Chapter 2, which is co-authored with Professor Andrew Patton, presents new models for the dependence structure, or copula, of economic variables based on a factor structure. The proposed models are particularly attractive for high dimensional applications, involving fifty or more variables. This class of models generally lacks a closed-form density, but analytical results for the implied tail dependence can be obtained using extreme value theory, and estimation via a simulation-based method using rank statistics is simple and fast. We study the finite-sample properties of the estimation method for applications involving up to 100 variables, and apply the model to daily returns on all 100 constituents of the S\&P 100 index. We find significant evidence of tail dependence, heterogeneous dependence, and asymmetric dependence, with dependence being stronger in crashes than in booms.
Chapter 3, which is co-authored with Professor Andrew Patton, considers the estimation of the parameters of a copula via a simulated method of moments type approach. This approach is attractive when the likelihood of the copula model is not known in closed form, or when the researcher has a set of dependence measures or other functionals of the copula that are of particular interest. The proposed approach naturally also nests method of moments and generalized method of moments estimators. Drawing on results for simulation based estimation and on recent work in empirical copula process theory, we show the consistency and asymptotic normality of the proposed estimator, and obtain a simple test of over-identifying restrictions as a goodness-of-fit test. The results apply to both $iid$ and time series data. We analyze the finite-sample behavior of these estimators in an extensive simulation study.
Chapter 4, which is co-authored with Professor Andrew Patton, proposes a new class of copula-based dynamic models for high dimension conditional distributions, facilitating the estimation of a wide variety of measures of systemic risk. Our proposed models draw on successful ideas from the literature on modelling high dimension covariance matrices and on recent work on models for general time-varying distributions. Our use of copula-based models enable the estimation of the joint model in stages, greatly reducing the computational burden. We use the proposed new models to study a collection of daily credit default swap (CDS) spreads on 100 U.S. firms over the period 2006 to 2012. We find that while the probability of distress for individual firms has greatly reduced since the financial crisis of 2008-09, the joint probability of distress (a measure of systemic risk) is substantially higher now than in the pre-crisis period.