Browsing by Subject "High-dimensional"
- Results Per Page
- Sort Options
Item Open Access Bayesian Inference in Large-scale Problems(2016) Johndrow, James EdwardMany modern applications fall into the category of "large-scale" statistical problems, in which both the number of observations n and the number of features or parameters p may be large. Many existing methods focus on point estimation, despite the continued relevance of uncertainty quantification in the sciences, where the number of parameters to estimate often exceeds the sample size, despite huge increases in the value of n typically seen in many fields. Thus, the tendency in some areas of industry to dispense with traditional statistical analysis on the basis that "n=all" is of little relevance outside of certain narrow applications. The main result of the Big Data revolution in most fields has instead been to make computation much harder without reducing the importance of uncertainty quantification. Bayesian methods excel at uncertainty quantification, but often scale poorly relative to alternatives. This conflict between the statistical advantages of Bayesian procedures and their substantial computational disadvantages is perhaps the greatest challenge facing modern Bayesian statistics, and is the primary motivation for the work presented here.
Two general strategies for scaling Bayesian inference are considered. The first is the development of methods that lend themselves to faster computation, and the second is design and characterization of computational algorithms that scale better in n or p. In the first instance, the focus is on joint inference outside of the standard problem of multivariate continuous data that has been a major focus of previous theoretical work in this area. In the second area, we pursue strategies for improving the speed of Markov chain Monte Carlo algorithms, and characterizing their performance in large-scale settings. Throughout, the focus is on rigorous theoretical evaluation combined with empirical demonstrations of performance and concordance with the theory.
One topic we consider is modeling the joint distribution of multivariate categorical data, often summarized in a contingency table. Contingency table analysis routinely relies on log-linear models, with latent structure analysis providing a common alternative. Latent structure models lead to a reduced rank tensor factorization of the probability mass function for multivariate categorical data, while log-linear models achieve dimensionality reduction through sparsity. Little is known about the relationship between these notions of dimensionality reduction in the two paradigms. In Chapter 2, we derive several results relating the support of a log-linear model to nonnegative ranks of the associated probability tensor. Motivated by these findings, we propose a new collapsed Tucker class of tensor decompositions, which bridge existing PARAFAC and Tucker decompositions, providing a more flexible framework for parsimoniously characterizing multivariate categorical data. Taking a Bayesian approach to inference, we illustrate empirical advantages of the new decompositions.
Latent class models for the joint distribution of multivariate categorical, such as the PARAFAC decomposition, data play an important role in the analysis of population structure. In this context, the number of latent classes is interpreted as the number of genetically distinct subpopulations of an organism, an important factor in the analysis of evolutionary processes and conservation status. Existing methods focus on point estimates of the number of subpopulations, and lack robust uncertainty quantification. Moreover, whether the number of latent classes in these models is even an identified parameter is an open question. In Chapter 3, we show that when the model is properly specified, the correct number of subpopulations can be recovered almost surely. We then propose an alternative method for estimating the number of latent subpopulations that provides good quantification of uncertainty, and provide a simple procedure for verifying that the proposed method is consistent for the number of subpopulations. The performance of the model in estimating the number of subpopulations and other common population structure inference problems is assessed in simulations and a real data application.
In contingency table analysis, sparse data is frequently encountered for even modest numbers of variables, resulting in non-existence of maximum likelihood estimates. A common solution is to obtain regularized estimates of the parameters of a log-linear model. Bayesian methods provide a coherent approach to regularization, but are often computationally intensive. Conjugate priors ease computational demands, but the conjugate Diaconis--Ylvisaker priors for the parameters of log-linear models do not give rise to closed form credible regions, complicating posterior inference. In Chapter 4 we derive the optimal Gaussian approximation to the posterior for log-linear models with Diaconis--Ylvisaker priors, and provide convergence rate and finite-sample bounds for the Kullback-Leibler divergence between the exact posterior and the optimal Gaussian approximation. We demonstrate empirically in simulations and a real data application that the approximation is highly accurate, even in relatively small samples. The proposed approximation provides a computationally scalable and principled approach to regularized estimation and approximate Bayesian inference for log-linear models.
Another challenging and somewhat non-standard joint modeling problem is inference on tail dependence in stochastic processes. In applications where extreme dependence is of interest, data are almost always time-indexed. Existing methods for inference and modeling in this setting often cluster extreme events or choose window sizes with the goal of preserving temporal information. In Chapter 5, we propose an alternative paradigm for inference on tail dependence in stochastic processes with arbitrary temporal dependence structure in the extremes, based on the idea that the information on strength of tail dependence and the temporal structure in this dependence are both encoded in waiting times between exceedances of high thresholds. We construct a class of time-indexed stochastic processes with tail dependence obtained by endowing the support points in de Haan's spectral representation of max-stable processes with velocities and lifetimes. We extend Smith's model to these max-stable velocity processes and obtain the distribution of waiting times between extreme events at multiple locations. Motivated by this result, a new definition of tail dependence is proposed that is a function of the distribution of waiting times between threshold exceedances, and an inferential framework is constructed for estimating the strength of extremal dependence and quantifying uncertainty in this paradigm. The method is applied to climatological, financial, and electrophysiology data.
The remainder of this thesis focuses on posterior computation by Markov chain Monte Carlo. The Markov Chain Monte Carlo method is the dominant paradigm for posterior computation in Bayesian analysis. It has long been common to control computation time by making approximations to the Markov transition kernel. Comparatively little attention has been paid to convergence and estimation error in these approximating Markov Chains. In Chapter 6, we propose a framework for assessing when to use approximations in MCMC algorithms, and how much error in the transition kernel should be tolerated to obtain optimal estimation performance with respect to a specified loss function and computational budget. The results require only ergodicity of the exact kernel and control of the kernel approximation accuracy. The theoretical framework is applied to approximations based on random subsets of data, low-rank approximations of Gaussian processes, and a novel approximating Markov chain for discrete mixture models.
Data augmentation Gibbs samplers are arguably the most popular class of algorithm for approximately sampling from the posterior distribution for the parameters of generalized linear models. The truncated Normal and Polya-Gamma data augmentation samplers are standard examples for probit and logit links, respectively. Motivated by an important problem in quantitative advertising, in Chapter 7 we consider the application of these algorithms to modeling rare events. We show that when the sample size is large but the observed number of successes is small, these data augmentation samplers mix very slowly, with a spectral gap that converges to zero at a rate at least proportional to the reciprocal of the square root of the sample size up to a log factor. In simulation studies, moderate sample sizes result in high autocorrelations and small effective sample sizes. Similar empirical results are observed for related data augmentation samplers for multinomial logit and probit models. When applied to a real quantitative advertising dataset, the data augmentation samplers mix very poorly. Conversely, Hamiltonian Monte Carlo and a type of independence chain Metropolis algorithm show good mixing on the same dataset.
Item Open Access Bayesian Modeling and Computation for Mixed Data(2012) Cui, KaiMultivariate or high-dimensional data with mixed types are ubiquitous in many fields of studies, including science, engineering, social science, finance, health and medicine, and joint analysis of such data entails both statistical models flexible enough to accommodate them and novel methodologies for computationally efficient inference. Such joint analysis is potentially advantageous in many statistical and practical aspects, including shared information, dimensional reduction, efficiency gains, increased power and better control of error rates.
This thesis mainly focuses on two types of mixed data: (i) mixed discrete and continuous outcomes, especially in a dynamic setting; and (ii) multivariate or high dimensional continuous data with potential non-normality, where each dimension may have different degrees of skewness and tail-behaviors. Flexible Bayesian models are developed to jointly model these types of data, with a particular interest in exploring and utilizing the factor models framework. Much emphasis has also been placed on the ability to scale the statistical approaches and computation efficiently up to problems with long mixed time series or increasingly high-dimensional heavy-tailed and skewed data.
To this end, in Chapter 1, we start with reviewing the mixed data challenges. We start developing generalized dynamic factor models for mixed-measurement time series in Chapter 2. The framework allows mixed scale measurements in different time series, with the different measurements having distributions in the exponential family conditional on time-specific dynamic latent factors. Efficient computational algorithms for Bayesian inference are developed that can be easily extended to long time series. Chapter 3 focuses on the problem of jointly modeling of high-dimensional data with potential non-normality, where the mixed skewness and/or tail-behaviors in different dimensions are accurately captured via the proposed heavy-tailed and skewed factor models. Chapter 4 further explores the properties and efficient Bayesian inference for the generalized semiparametric Gaussian variance-mean mixtures family, and introduce it as a potentially useful family for modeling multivariate heavy-tailed and skewed data.
Item Open Access Bayesian Semi-parametric Factor Models(2012) Bhattacharya, AnirbanIdentifying a lower-dimensional latent space for representation of high-dimensional observations is of significant importance in numerous biomedical and machine learning applications. In many such applications, it is now routine to collect data where the dimensionality of the outcomes is comparable or even larger than the number of available observations. Motivated in particular by the problem of predicting the risk of impending diseases from massive gene expression and single nucleotide polymorphism profiles, this dissertation focuses on building parsimonious models and computational schemes for high-dimensional continuous and unordered categorical data, while also studying theoretical properties of the proposed methods. Sparse factor modeling is fast becoming a standard tool for parsimonious modeling of such massive dimensional data and the content of this thesis is specifically directed towards methodological and theoretical developments in Bayesian sparse factor models.
The first three chapters of the thesis studies sparse factor models for high-dimensional continuous data. A class of shrinkage priors on factor loadings are introduced with attractive computational properties, with operating characteristics explored through a number of simulated and real data examples. In spite of the methodological advances over the past decade, theoretical justifications in high-dimensional factor models are scarce in the Bayesian literature. Part of the dissertation focuses on exploring estimation of high-dimensional covariance matrices using a factor model and studying the rate of posterior contraction as both the sample size & dimensionality increases.
To relax the usual assumption of a linear relationship among the latent and observed variables in a standard factor model, extensions to a non-linear latent factor model are also considered.
Although Gaussian latent factor models are routinely used for modeling of dependence in continuous, binary and ordered categorical data, it leads to challenging computation and complex modeling structures for unordered categorical variables. As an alternative, a novel class of simplex factor models for massive-dimensional and enormously sparse contingency table data is proposed in the second part of the thesis. An efficient MCMC scheme is developed for posterior computation and the methods are applied to modeling dependence in nucleotide sequences and prediction from high-dimensional categorical features. Building on a connection between the proposed model & sparse tensor decompositions, we propose new classes of nonparametric Bayesian models for testing associations between a massive dimensional vector of genetic markers and a phenotypical outcome.
Item Open Access Scalable Nonparametric Bayes Learning(2013) Banerjee, AnjishnuCapturing high dimensional complex ensembles of data is becoming commonplace in a variety of application areas. Some examples include
biological studies exploring relationships between genetic mutations and diseases, atmospheric and spatial data, and internet usage and online behavioral data. These large complex data present many challenges in their modeling and statistical analysis. Motivated by high dimensional data applications, in this thesis, we focus on building scalable Bayesian nonparametric regression algorithms and on developing models for joint distributions of complex object ensembles.
We begin with a scalable method for Gaussian process regression, a commonly used tool for nonparametric regression, prediction and spatial modeling. A very common bottleneck for large data sets is the need for repeated inversions of a big covariance matrix, which is required for likelihood evaluation and inference. Such inversion can be practically infeasible and even if implemented, highly numerically unstable. We propose an algorithm utilizing random projection ideas to construct flexible, computationally efficient and easy to implement approaches for generic scenarios. We then further improve the algorithm incorporating some structure and blocking ideas in our random projections and demonstrate their applicability in other contexts requiring inversion of large covariance matrices. We show theoretical guarantees for performance as well as substantial improvements over existing methods with simulated and real data. A by product of the work is that we discover hitherto unknown equivalences between approaches in machine learning, random linear algebra and Bayesian statistics. We finally connect random projection methods for large dimensional predictors and large sample size under a unifying theoretical framework.
The other focus of this thesis is joint modeling of complex ensembles of data from different domains. This goes beyond traditional relational modeling of ensembles of one type of data and relies on probability mixing measures over tensors. These models have added flexibility over some existing product mixture model approaches in letting each component of the ensemble have its own dependent cluster structure. We further investigate the question of measuring dependence between variables of different types and propose a very general novel scaled measure based on divergences between the joint and marginal distributions of the objects. Once again, we show excellent performance in both simulated and real data scenarios.