Browsing by Subject "Hydrocephalus"
Results Per Page
Sort Options
Item Open Access Clinical outcome of cerebrospinal fluid shunting for communicating hydrocephalus in mucopolysaccharidoses I, II, and III: a retrospective analysis of 13 patients.(Neurosurgery, 2010-12) Aliabadi, Hamidreza; Reynolds, Renee; Powers, Ciaran J; Grant, Gerald; Fuchs, Herbert; Kurtzberg, JoanneBackground
Intracranial pathology is a well-documented feature of mucopolysaccharidoses (MPSs), including communicating hydrocephalus (CH). Neither the success nor the complications of cerebrospinal fluid shunting in MPS patients have been well documented.Objective
To retrospectively analyze 13 children with communicating hydrocephalus and MPS at our institution between 1998 and 2006.Methods
Thirteen patients diagnosed with MPS I, II, or III presenting for stem cell transplantation were retrospectively analyzed. Patients underwent a rigorous pretransplantation workup, including magnetic resonance imaging of the brain. If imaging revealed ventriculomegaly, a lumbar puncture was performed. If intracranial pressure was >20 cm H20 or the patient demonstrated clinical signs of hydrocephalus or evidence of clinical decline with increasing ventricular size on imaging, a ventriculoperitoneal shunt (VPS) was placed. Clinical outcomes were analyzed after dividing the patients into 2 groups: patients who underwent VPS before (group A) and after (Group B) stem cell transplantation.Results
There were 8 patients in group A and 5 in group B. Group B patients developed more severe complications, including 2 patients who required VPS early after transplantation, one who died secondary to intracerebral hemorrhage and another who developed a subdural empyema. Of the 8 patients in group A, 5 had complications, including 2 shunt infections, a punctate intracerebral hematoma, shunt tube migration, and 3 shunt failures.Conclusion
This is the largest review of MPS patients with communicating hydrocephalus. It demonstrates that VPS is an effective treatment. MPS patients need to be evaluated for hydrocephalus before stem cell transplantation because pretransplantation shunting appears to have the most favorable risk/benefit ratio.Item Open Access Driving Brain Tumorigenesis: Generation and Biological Characterization of a Mutant IDH1 Mouse Model(2014) Pirozzi, Christopher JamesDespite decades worth of research, glioblastoma remains one of the most lethal cancers. The identification of IDH1 as a major cancer gene in glioblastoma provides an exceptional opportunity for improving our understanding, diagnostics, and treatment of this disease. In addition to mutations in IDH1, recent studies from our laboratory have characterized the genetic landscape of gliomas and have shown the cooperation between IDH1 mutations and other oncogenic alterations such at TP53 mutations. Normally, IDH1 functions in the oxidative decarboxylation of isocitrate to α–ketoglutarate, however the mutant form confers neomorphic enzymatic activity by producing 2–hydroxyglutarate, an oncometabolite responsible for aberrant methylation in IDH1–mutated tumors, among other mutant IDH1–mediated phenotypes. To determine the role of mutant IDH1 in vivo, we generated a conditional knock–in mouse model. This genetically faithful system is both biologically and clinically relevant and will promote the understanding of mutant IDH1–mediated tumorigenesis while offering a route for therapeutic targeting.
We observed that broad expression of mutant IDH1 throughout the brain leads to hydrocephalus in 80% of animals. In assessing the earliest effects of mutant IDH1 on the brain, we determined mutant IDH1 confers a decrease in the proliferative cells of the subventricular zone of the lateral ventricle, the area which houses the neural stem cells in embryonic and adult animals. Additionally, a perturbation to the normal neural stem cell niche was observed in these animals. Combined, this data suggests that mutant IDH1 may be affecting the signaling pathways involved in differentiation in this population of cells. In vivo and in vitro studies will further elucidate mutant IDH1's effects on the differentiation patterns of neural stem cells expressing mutant IDH1.
To express mutant IDH1 in a more restricted manner and harness spatiotemporal control, we crossed mutant animals to a Nestin–CreERT2 strain of mouse that permits expression of floxed alleles upon treatment with tamoxifen. Animals were sacrificed at the onset of symptoms or at 1–year of age. We observed the development of both low– and high–grade gliomas in approximately 15–percent of E18.5 tamoxifen–treated animals. All tumors were found in a TP53–deleted background with mutant IDH1 being detected in only those tumors with the mutant allele. Lastly, to decrease the latency and increase the penetrance of tumor formation, an orthotopic intracranial injection model was generated to allow for visualization of tumor formation and development, as well as investigation of therapeutic modalities. The models generated and the knowledge gained from these studies will offer an understanding of the biological effects of the most common mutations found in the astrocytic subset of gliomas, bringing us strides closer to determining mechanisms and therapeutic targets for IDH1–mutated cancers.
Item Open Access Effect of 6% hydroxyethyl starch 130/0.4 in 0.9% sodium chloride (Voluven®) on complications after subarachnoid hemorrhage: a retrospective analysis.(Springerplus, 2013-12) Khan, Shariq A; Adogwa, Owoicho; Gan, Tong J; Null, Ulysses T; Verla, Terence; Gokhale, Sankalp; White, William D; Britz, Gavin W; Zomorodi, Ali R; James, Michael L; McDonagh, David LBACKGROUND: 6% Hydroxyethyl Starch 130/0.4 in 0.9% Sodium Chloride (Voluven®; 6% HES 130/0.4) is a colloid often used for fluid resuscitation in patients with subarachnoid hemorrhage (SAH), despite a lack of safety data for this use. The purpose of our study was to evaluate the effect of 6% HES 130/0.4 on major complications associated with SAH. METHODS: Medical records of all patients presenting between May 2010 and September 2012 with aneurysmal SAH were analyzed. Patients were divided in two groups based on the administration of 6% HES 130/0.4; HES group (n=57) and Non-HES group (n=72). The primary outcome included a composite of three major complications associated with SAH: Delayed Cerebral Ischemia (DCI), Hydrocephalus (HCP) requiring cerebrospinal fluid (CSF) shunting, and Rebleeding. RESULTS: The study groups were similar with respect to most characteristics except the incidences of hypertension, ischemic heart disease, Fisher grade and lowest hemoglobin during stay. The odds of developing the primary composite outcome was higher in the HES group [OR= 3.1(1.30-7.36), p=0.01]. The patients in the HES group had a significantly longer median duration of hospital (19 vs 14 days) and Neurointensive Care Unit stay (14 vs 10 days) compared to the Non HES group. CONCLUSION: We observed increased complications after SAH with 6% HES 130/0.4 (Voluven®) administration. An adequately powered prospective randomized controlled trial into the safety of 6% HES 130/0.4 in this patient population is warranted.Item Open Access Ratios of head circumference to ventricular size vary over time and predict eventual need for CSF diversion in intraventricular hemorrhage of prematurity.(Child's nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery, 2024-03) Venkatraman, Vishal; Harward, Stephen C; Bhasin, Srijan; Calderon, Kylie; Atkins, Sage L; Liu, Beiyu; Lee, Hui-Jie; Chow, Shein-Chung; Fuchs, Herbert E; Thompson, Eric MPurpose
Intraventricular hemorrhage (IVH) of prematurity can lead to hydrocephalus, sometimes necessitating permanent cerebrospinal fluid (CSF) diversion. We sought to characterize the relationship between head circumference (HC) and ventricular size in IVH over time to evaluate the clinical utility of serial HC measurements as a metric in determining the need for CSF diversion.Methods
We included preterm infants with IVH born between January 2000 and May 2020. Three measures of ventricular size were obtained: ventricular index (VI), Evan's ratio (ER), and frontal occipital head ratio (FOHR). The Pearson correlations (r) between the initial (at birth) paired measurements of HC and ventricular size were reported. Multivariable longitudinal regression models were fit to examine the HC:ventricle size ratio, adjusting for the age of the infant, IVH grade (I/II vs. III/IV), need for CSF diversion, and sex.Results
A total of 639 patients with an average gestational age of 27.5 weeks were included. IVH grade I/II and grade III/IV patients had a positive correlation between initial HC and VI (r = 0.47, p < 0.001 and r = 0.48, p < 0.001, respectively). In our longitudinal models, patients with a low-grade IVH (I/II) had an HC:VI ratio 0.52 higher than those with a high-grade IVH (p-value < 0.001). Patients with low-grade IVH had an HC:ER ratio 12.94 higher than those with high-grade IVH (p-value < 0.001). Patients with low-grade IVH had a HC:FOHR ratio 12.91 higher than those with high-grade IVH (p-value < 0.001). Infants who did not require CSF diversion had an HC:VI ratio 0.47 higher than those who eventually did (p < 0.001). Infants without CSF diversion had an HC:ER ratio 16.53 higher than those who received CSF diversion (p < 0.001). Infants without CSF diversion had an HC:FOHR ratio 15.45 higher than those who received CSF diversion (95% CI (11.34, 19.56), p < 0.001).Conclusions
There is a significant difference in the ratio of HC:VI, HC:ER, and HC:FOHR size between patients with high-grade IVH and low-grade IVH. Likewise, there is a significant difference in HC:VI, HC:ER, and HC:FOHR between those who did and did not have CSF diversion. The routine assessments of both head circumference and ventricle size by ultrasound are important clinical tools in infants with IVH of prematurity.Item Open Access Repeated autologous umbilical cord blood infusions are feasible and had no acute safety issues in young babies with congenital hydrocephalus.(Pediatric research, 2015-12) Sun, Jessica M; Grant, Gerald A; McLaughlin, Colleen; Allison, June; Fitzgerald, Anne; Waters-Pick, Barbara; Kurtzberg, JoanneBackground
Babies with congenital hydrocephalus often experience developmental disabilities due to brain injury associated with prolonged increased pressure on the developing brain parenchyma. Umbilical cord blood (CB) infusion has favorable effects in animal models of brain hypoxia and stroke and is being investigated in clinical trials of brain injury in both children and adults. We sought to establish the safety and feasibility of repeated intravenous infusions of autologous CB in young babies with congenital hydrocephalus.Methods
Infants with severe congenital hydrocephalus and an available qualified autologous CB unit traveled to Duke for evaluation and CB infusion. When possible, the CB unit was utilized for multiple infusions. Patient and CB data were obtained at the time of infusion and analyzed retrospectively.Results
From October 2006 to August 2014, 76 patients with congenital hydrocephalus received 143 autologous CB infusions. Most babies received repeated doses, for a total of two (n = 45), three (n = 18), or four (n = 4) infusions. There were no infusion-related adverse events. As expected, all babies experienced developmental delays.Conclusion
Cryopreserved CB products may be effectively manipulated to provide multiple CB doses. Repeated intravenous infusion of autologous CB is safe and feasible in young babies with congenital hydrocephalus.