Browsing by Subject "Hydrogen"
Results Per Page
Sort Options
Item Open Access AN ANALYSIS OF GREEN HYDROGEN TO AMMONIA MARKET OPPORTUNITIES(2022-04-22) Gulati, AkashBuilding off a previous internship with a large renewable energy company, this Masters Project analyzes the additional cost for conversion, transportation, and cracking of hydrogen to ammonia. Previous work for the client analyzed three additional hydrogen conversion and transportation pathways. All four pathways are summarized below. • Hydrogen compression, gaseous trucking, onsite gaseous storage • Hydrogen compression, pipeline transportation, onsite gaseous storage • Hydrogen liquefaction, liquid trucking, onsite liquid storage, vaporization • Hydrogen storage, ammonia generation, liquid ammonia trucking, onsite liquid ammonia storage, ammonia cracking back to hydrogen (analyzed here) This masters project found that the conversion of hydrogen to ammonia as a transportation pathway is never the cheapest option on a dollar per kilogram H2-mile basis. This is because the pathway requires many chemical and thermodynamic conversions, each with their own efficiency losses: generation of renewable electricity, electrolysis to generate hydrogen, the Haber-Bosch process to produce ammonia, ammonia storage, ammonia transportation, and subsequent cracking of ammonia back to hydrogen. In total the pathway analyzed in this MP has a 24% cycle efficiency. In addition to analyzing the ammonia conversion pathway, the client requested an analysis of the existing hydrogen and ammonia markets. Much of this Masters Project is devoted to developing a thorough understand of the many use cases, generation technologies, and transportation pathways for these two crucial molecules. Additionally, the client requested an analysis of the major players in the ammonia-based fertilizer market as a basis for a market entry strategy into this space. Research found that hydrogen can be made from renewable electricity, steam, coal, or almost any other energy source, each with its own level of associated carbon emissions. Hydrogen is used primarily for oil and gas refining, ammonia production, methanol production, steelmaking, transportation, and many other applications. Once made, hydrogen can be transported as a compressed gas in trucks or pipelines, as a liquid in trucks, or converted to ammonia for transportation. Ammonia is made by combining hydrogen with nitrogen using the Haber-Bosch process. The color (grey, green, blue, etc.) of hydrogen that is used is a large determinant of the carbon intensity of the ammonia produced. Ammonia is used primarily for fertilizer production, and to a lesser extent in the refining of oil and gas and the production of specialty chemicals. Once made, ammonia can be transported in gaseous pipelines, or liquefied and transported on trucks, barges, or ships. Most major ammonia producers have committed to decarbonizing their operations. This will require the use of green hydrogen to produce green ammonia as a feedstock. It is estimated that 15% of the global ammonia market will be served by green hydrogen by 2030. This represents a large opportunity for renewable energy companies such as my client. Ammonia manufacturing is also a highly concentrated market, with seven US manufacturers representing 70% of the total production capacity. Strategic analysis of the existing markets found that the two key market advantages for renewable energy companies are location and market growth. Renewable electricity is cheap in the areas where ammonia is currently made. This removes conversion and transportation costs from the Levelized Cost of Hydrogen calculation and allows green hydrogen to be more competitive, although still not at parity with grey hydrogen. Additionally, although currently nascent, the market for green ammonia is expected to reach $500 million by 2025 and $1.5 billion by 2050. As the market grows, renewable energy companies will have ample opportunities to sell electricity to ammonia producers. The two main market entry challenges identified in this analysis are competition from industrial gases manufacturers and the lack of national regulatory support in the form of carbon pricing. Industrial gases manufacturers currently own the customer relationships with ammonia producers and are expected to be very protective and cost competitive. Most the industrial gases companies have short term decarbonization plans that involve the implementation of blue hydrogen, and longer-term plans involving green hydrogen. Additionally, none of the states with high volumes of ammonia production currently have a carbon tax. This results in green hydrogen and ammonia being more expensive than the currently used grey hydrogen and ammonia. The client should begin their ammonia entry by developing small scale hydrogen off-taker agreements with large ammonia manufactures who are interested in green hydrogen. By bringing hydrogen production expertise in-house the client for this MP will be able to reduce the price gap between green and grey hydrogen and become a market leader in this emerging and quickly grown space.Item Open Access Analyzing site selectivity in Rh2(esp)2-catalyzed intermolecular C-H amination reactions.(J Am Chem Soc, 2014-04-16) Bess, Elizabeth N; DeLuca, Ryan J; Tindall, Daniel J; Oderinde, Martins S; Roizen, Jennifer L; Du Bois, J; Sigman, Matthew SPredicting site selectivity in C-H bond oxidation reactions involving heteroatom transfer is challenged by the small energetic differences between disparate bond types and the subtle interplay of steric and electronic effects that influence reactivity. Herein, the factors governing selective Rh2(esp)2-catalyzed C-H amination of isoamylbenzene derivatives are investigated, where modification to both the nitrogen source, a sulfamate ester, and substrate are shown to impact isomeric product ratios. Linear regression mathematical modeling is used to define a relationship that equates both IR stretching parameters and Hammett σ(+) values to the differential free energy of benzylic versus tertiary C-H amination. This model has informed the development of a novel sulfamate ester, which affords the highest benzylic-to-tertiary site selectivity (9.5:1) observed for this system.Item Open Access Design and Implementation of High Pressure Systems(2014) Shoop, Logan ThomasHydrogen is arising as a potential fuel source due to its high mass-specific energy and wide applicability. However, hydrogen must first be pressurized before being implemented, causing a loss in efficiency and larger issues in implementation. Current processes produce hydrogen at low pressure and then pressurize the gaseous hydrogen with a compressor. Thermodynamic studies have shown that producing hydrogen in pressurized chambers could reduce the energy losses due to compression, raising generation efficiency. These projected gains are purely theoretical, however, and ignore practical limitations. The goal of this thesis is to design and construct a safe high-pressure hydrogen producing system at 5000 psi and to show the steps and considerations during this process.
Item Open Access Financing the Green Hydrogen Economy(2023-04-28) Mullen, ElizabethHydrogen is expected to play a critical role in the decarbonization of the global energy system, as the IEA projects that in order to reach net-zero emissions by 2050, low-carbon hydrogen use will need to grow six times from today’s levels to meet up to 10% of total energy consumption (IRENA, 2022). Amidst growing concerns around energy security, governments and private industry are showing an appetite for tapping green hydrogen as an energy source, committing an unprecedented amount of financing to stand up a robust market in the next decade. While projects worth nearly $240 U.S. billion in the low-carbon hydrogen pipeline have been put forward in 2022, only about 10% of these have reached final investment decision (McKinsey Sustainability, 2022). To meet decarbonization goals, investment in green hydrogen facilities at a MW and above scale will need to rapidly increase. Yet, investors are faced with significant challenges and risks. Based on an analysis of large-scale green hydrogen projects that have successfully secured financial commitment, this paper sets out a framework for evaluating potential investment opportunities.Item Open Access Renewable Electricity Generation via Solar-Powered Methanol Reforming: Hybrid Proton Exchange Membrane Fuel Cell Systems Based on Novel Non-Concentrating, Intermediate-Temperature Solar Collectors(2015) Real, Daniel JordanTremendous research efforts have been conducted studying the capturing and conversion of solar energy. Solar thermal power systems offer a compelling opportunity for renewable energy utilization with high efficiencies and excellent cost-effectiveness. The goal of this work was to design a non-concentrating collector capable of reaching temperatures above 250 °C, use this collector to power methanol steam reforming, and operate a proton exchange membrane (PEM) fuel cell using the generated hydrogen. The study presents the construction and characterization of a non-concentrating, intermediate-temperature, fin-in-tube evacuated solar collector, made of copper and capable of reaching stagnation temperatures of 268.5 °C at 1000 W/m2 irradiance. The collector was used to power methanol steam reforming, including the initial heating and vaporization of liquid reactants and the final heating of the gaseous reactants. A preferential oxidation (PROX) catalyst was used to remove CO from simulated reformate gas, and this product gas was used to operate a PEM fuel cell. The results show 1) that the outlet temperature is not limited by heat transfer from the absorber coating to the heat transfer fluid, but by the amount of solar energy absorbed. This implicates a constant heat flux description of the heat transfer process and allows for the usage of materials with lower thermal conductivity than copper. 2) It is possible to operate a PEM fuel cell from reformate gas if a PROX catalyst is used to remove CO from the gas. 3) The performance of the fuel cell is only slightly decreased (~4%) by CO2 dilution present in the reformate and PROX gas. These results provide a foundation for the first renewable electricity generation via solar-powered methanol reforming through a hybrid PEM fuel cell system based on novel non-concentrating, intermediate-temperature solar collectors.
Item Open Access THE FUTURE OF BIG OIL IN THE HYDROGEN ECONOMY(2021-04-30) Koutsogeorgas, Panayiotis; Ripecky, ZoëGlobally, oil and gas companies have approached hydrogen fuel with varying levels of interest and investment. In Europe, where policymakers have earmarked large sums of investment in the future of hydrogen, oil majors have been generally more proactive about incorporating hydrogen into their corporate strategies. US policymakers and oil majors have overall been less focused on hydrogen, but the US has some unique conditions that may be favorable to an expanded hydrogen industry. This project outlines the current positions of oil majors when it comes to hydrogen. It explores the unique challenges and opportunities that exist for traditional oil and gas companies, and how oil majors might adapt their infrastructure and workforce to embrace a hydrogen future.Item Open Access Ultra High Pressure Hydrogen Studies(2016) Schicho, Andrew RichardHydrogen has been called the fuel of the future, and as it’s non- renewable counterparts become scarce the economic viability of hydrogen gains traction. The potential of hydrogen is marked by its high mass specific energy density and wide applicability as a fuel in fuel cell vehicles and homes. However hydrogen’s volume must be reduced via pressurization or liquefaction in order to make it more transportable and volume efficient. Currently the vast majority of industrially produced hydrogen comes from steam reforming of natural gas. This practice yields low-pressure gas which must then be compressed at considerable cost and uses fossil fuels as a feedstock leaving behind harmful CO and CO2 gases as a by-product. The second method used by industry to produce hydrogen gas is low pressure electrolysis. In comparison the electrolysis of water at low pressure can produce pure hydrogen and oxygen gas with no harmful by-products using only water as a feedstock, but it will still need to be compressed before use. Multiple theoretical works agree that high pressure electrolysis could reduce the energy losses due to product gas compression. However these works openly admit that their projected gains are purely theoretical and ignore the practical limitations and resistances of a real life high pressure system. The goal of this work is to experimentally confirm the proposed thermodynamic gains of ultra-high pressure electrolysis in alkaline solution and characterize the behavior of a real life high pressure system.