Browsing by Subject "Hydrogen Peroxide"
Results Per Page
Sort Options
Item Open Access C1q/Tumor Necrosis Factor-Related Protein-9 Regulates the Fate of Implanted Mesenchymal Stem Cells and Mobilizes Their Protective Effects Against Ischemic Heart Injury via Multiple Novel Signaling Pathways.(Circulation, 2017-11) Yan, Wenjun; Guo, Yongzhen; Tao, Ling; Lau, Wayne Bond; Gan, Lu; Yan, Zheyi; Guo, Rui; Gao, Erhe; Wong, G William; Koch, Walter L; Wang, Yajing; Ma, Xin-LiangBackground
Cell therapy remains the most promising approach against ischemic heart injury. However, the poor survival of engrafted stem cells in the ischemic environment limits their therapeutic efficacy for cardiac repair after myocardial infarction. CTRP9 (C1q/tumor necrosis factor-related protein-9) is a novel prosurvival cardiokine with significantly downregulated expression after myocardial infarction. Here we tested a hypothesis that CTRP9 might be a cardiokine required for a healthy microenvironment promoting implanted stem cell survival and cardioprotection.Methods
Mice were subjected to myocardial infarction and treated with adipose-derived mesenchymal stem cells (ADSCs, intramyocardial transplantation), CTRP9, or their combination. Survival, cardiac remodeling and function, cardiomyocytes apoptosis, and ADSCs engraftment were evaluated. Whether CTRP9 directly regulates ADSCs function was determined in vitro. Discovery-drive approaches followed by cause-effect analysis were used to uncover the molecular mechanisms of CTRP9.Results
Administration of ADSCs alone failed to exert significant cardioprotection. However, administration of ADSCs in addition to CTRP9 further enhanced the cardioprotective effect of CTRP9 (P<0.05 or P<0.01 versus CTRP9 alone), suggesting a synergistic effect. Administration of CTRP9 at a dose recovering physiological CTRP9 levels significantly prolonged ADSCs retention/survival after implantation. Conversely, the number of engrafted ADSCs was significantly reduced in the CTRP9 knockout heart. In vitro study demonstrated that CTRP9 promoted ADSCs proliferation and migration, and it protected ADSCs against hydrogen peroxide-induced cellular death. CTRP9 enhances ADSCs proliferation/migration by extracellular regulated protein kinases (ERK)1/2-matrix metallopeptidase 9 signaling and promotes antiapoptotic/cell survival via ERK-nuclear factor erythroid-derived 2-like 2/antioxidative protein expression. N-cadherin was identified as a novel CTRP9 receptor mediating ADSCs signaling. Blockade of either N-cadherin or ERK1/2 completely abolished the previously noted CTRP9 effects. Although CTRP9 failed to promote ADSCs cardiogenic differentiation, CTRP9 promotes superoxide dismutase 3 expression and secretion from ADSCs, protecting cardiomyocytes against oxidative stress-induced cell death.Conclusions
We provide the first evidence that CTRP9 promotes ADSCs proliferation/survival, stimulates ADSCs migration, and attenuates cardiomyocyte cell death by previously unrecognized signaling mechanisms. These include binding with N-cadherin, activation of ERK-matrix metallopeptidase 9 and ERK-nuclear factor erythroid-derived 2-like 2 signaling, and upregulation/secretion of antioxidative proteins. These results suggest that CTRP9 is a cardiokine critical in maintaining a healthy microenvironment facilitating stem cell engraftment in infarcted myocardial tissue, thereby enhancing stem cell therapeutic efficacy.Item Open Access Electrochemical Disinfection of Liquid Human Waste Using Potentiodynamic Methods and Controlled Electrode Surface Chemistry(2018) Thostenson, James OwenRoughly 40% of the world does not have access to appropriate sanitation of human generated waste water. Lack of infrastructure and poverty in developing nations has stymied the deployment of conventional sewage treatment practices. In helping to solve this global issue requires the development of an energy efficient, cost-effective, low-maintenance, and decentralized toilet system that can remediate human liquid waste, or, blackwater. Herein, electrochemical disinfection as a means of treating blackwater is investigated using degenerately boron-doped diamond and Magnéli-phase titanium sub-oxide electrodes. It is found that both can be operated in potentiodynamic modes to control surface chemistry and improve generation of biocidal oxidants such as hydrogen peroxide and chlorine
in blackwater containing solutions. Use of a packed-bed electrochemical reactor is also studied in the treatment of blackwater using Magnéli-phase titanium sub-oxide granular electrodes. It is found that bed-height, flow-rate, and blackwater chemistry
can greatly affect the effectiveness of electrochemical disinfection and stability of a packed-bed electrochemical reactor. Overall, these results highlight how existing electrode materials can be modified or controlled in-situ to inhibit fouling, generate
oxidants using less energy, and therefore disinfect blackwater pathogens more effectively.
Item Open Access H2O2-Driven Anticancer Activity of Mn Porphyrins and the Underlying Molecular Pathways.(Oxidative medicine and cellular longevity, 2021-01) Batinic-Haberle, Ines; Tovmasyan, Artak; Huang, Zhiqing; Duan, Weina; Du, Li; Siamakpour-Reihani, Sharareh; Cao, Zhipeng; Sheng, Huaxin; Spasojevic, Ivan; Alvarez Secord, AngelesMn(III) ortho-N-alkyl- and N-alkoxyalkyl porphyrins (MnPs) were initially developed as superoxide dismutase (SOD) mimics. These compounds were later shown to react with numerous reactive species (such as ONOO-, H2O2, H2S, CO3 •-, ascorbate, and GSH). Moreover, the ability of MnPs to oxidatively modify activities of numerous proteins has emerged as their major mechanism of action both in normal and in cancer cells. Among those proteins are transcription factors (NF-κB and Nrf2), mitogen-activated protein kinases, MAPKs, antiapoptotic bcl-2, and endogenous antioxidative defenses. The lead Mn porphyrins, namely, MnTE-2-PyP5+ (BMX-010, AEOL10113), MnTnBuOE-2-PyP5+ (BMX-001), and MnTnHex-2-PyP5+, were tested in numerous injuries of normal tissue and cellular and animal cancer models. The wealth of the data led to the progression of MnTnBuOE-2-PyP5+ into four Phase II clinical trials on glioma, head and neck cancer, anal cancer, and multiple brain metastases, while MnTE-2-PyP5+ is in Phase II clinical trial on atopic dermatitis and itch.Item Open Access Mass spectrometry-based thermal shift assay for protein-ligand binding analysis.(Anal Chem, 2010-07-01) West, GM; Thompson, JW; Soderblom, EJ; Dubois, LG; Moseley, MA; Fitzgerald, MCDescribed here is a mass spectrometry-based screening assay for the detection of protein-ligand binding interactions in multicomponent protein mixtures. The assay utilizes an oxidation labeling protocol that involves using hydrogen peroxide to selectively oxidize methionine residues in proteins in order to probe the solvent accessibility of these residues as a function of temperature. The extent to which methionine residues in a protein are oxidized after specified reaction times at a range of temperatures is determined in a MALDI analysis of the intact proteins and/or an LC-MS analysis of tryptic peptide fragments generated after the oxidation reaction is quenched. Ultimately, the mass spectral data is used to construct thermal denaturation curves for the detected proteins. In this proof-of-principle work, the protocol is applied to a four-protein model mixture comprised of ubiquitin, ribonuclease A (RNaseA), cyclophilin A (CypA), and bovine carbonic anhydrase II (BCAII). The new protocol's ability to detect protein-ligand binding interactions by comparing thermal denaturation data obtained in the absence and in the presence of ligand is demonstrated using cyclosporin A (CsA) as a test ligand. The known binding interaction between CsA and CypA was detected using both the MALDI- and LC-MS-based readouts described here.Item Open Access Sickle erythrocytes target cytotoxics to hypoxic tumor microvessels and potentiate a tumoricidal response.(PLoS One, 2013) Terman, David S; Viglianti, Benjamin L; Zennadi, Rahima; Fels, Diane; Boruta, Richard J; Yuan, Hong; Dreher, Mathew R; Grant, Gerald; Rabbani, Zahid N; Moon, Ejung; Lan, Lan; Eble, Joseph; Cao, Yiting; Sorg, Brian; Ashcraft, Kathleen; Palmer, Greg; Telen, Marilyn J; Dewhirst, Mark WResistance of hypoxic solid tumor niches to chemotherapy and radiotherapy remains a major scientific challenge that calls for conceptually new approaches. Here we exploit a hitherto unrecognized ability of sickled erythrocytes (SSRBCs) but not normal RBCs (NLRBCs) to selectively target hypoxic tumor vascular microenviroment and induce diffuse vaso-occlusion. Within minutes after injection SSRBCs, but not NLRBCs, home and adhere to hypoxic 4T1 tumor vasculature with hemoglobin saturation levels at or below 10% that are distributed over 70% of the tumor space. The bound SSRBCs thereupon form microaggregates that obstruct/occlude up to 88% of tumor microvessels. Importantly, SSRBCs, but not normal RBCs, combined with exogenous prooxidant zinc protoporphyrin (ZnPP) induce a potent tumoricidal response via a mutual potentiating mechanism. In a clonogenic tumor cell survival assay, SSRBC surrogate hemin, along with H(2)O(2) and ZnPP demonstrate a similar mutual potentiation and tumoricidal effect. In contrast to existing treatments directed only to the hypoxic tumor cell, the present approach targets the hypoxic tumor vascular environment and induces injury to both tumor microvessels and tumor cells using intrinsic SSRBC-derived oxidants and locally generated ROS. Thus, the SSRBC appears to be a potent new tool for treatment of hypoxic solid tumors, which are notable for their resistance to existing cancer treatments.Item Open Access Thermal responsive microgels as recyclable carriers to immobilize active proteins with enhanced nonaqueous biocatalytic performance.(Chemical communications (Cambridge, England), 2013-12) Wu, Qing; Su, Teng; Mao, Yanjie; Wang, QigangWe describe the preparation of a thermoresponsive microgel, which can non-covalently immobilize active proteins with enhanced biocatalytic performance in organic solvents and easy reusability due to the porous microstructure and temperature responsive property.