Browsing by Subject "Iduronidase"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access AAV Gene Therapy for MPS1-associated Corneal Blindness.(Scientific reports, 2016-02-22) Vance, Melisa; Llanga, Telmo; Bennett, Will; Woodard, Kenton; Murlidharan, Giridhar; Chungfat, Neil; Asokan, Aravind; Gilger, Brian; Kurtzberg, Joanne; Samulski, R Jude; Hirsch, Matthew LAlthough cord blood transplantation has significantly extended the lifespan of mucopolysaccharidosis type 1 (MPS1) patients, over 95% manifest cornea clouding with about 50% progressing to blindness. As corneal transplants are met with high rejection rates in MPS1 children, there remains no treatment to prevent blindness or restore vision in MPS1 children. Since MPS1 is caused by mutations in idua, which encodes alpha-L-iduronidase, a gene addition strategy to prevent, and potentially reverse, MPS1-associated corneal blindness was investigated. Initially, a codon optimized idua cDNA expression cassette (opt-IDUA) was validated for IDUA production and function following adeno-associated virus (AAV) vector transduction of MPS1 patient fibroblasts. Then, an AAV serotype evaluation in human cornea explants identified an AAV8 and 9 chimeric capsid (8G9) as most efficient for transduction. AAV8G9-opt-IDUA administered to human corneas via intrastromal injection demonstrated widespread transduction, which included cells that naturally produce IDUA, and resulted in a >10-fold supraphysiological increase in IDUA activity. No significant apoptosis related to AAV vectors or IDUA was observed under any conditions in both human corneas and MPS1 patient fibroblasts. The collective preclinical data demonstrate safe and efficient IDUA delivery to human corneas, which may prevent and potentially reverse MPS1-associated cornea blindness.Item Open Access Intrastromal Gene Therapy Prevents and Reverses Advanced Corneal Clouding in a Canine Model of Mucopolysaccharidosis I.(Molecular therapy : the journal of the American Society of Gene Therapy, 2020-06) Miyadera, Keiko; Conatser, Laura; Llanga, Telmo A; Carlin, Kendall; O'Donnell, Patricia; Bagel, Jessica; Song, Liujiang; Kurtzberg, Joanne; Samulski, R Jude; Gilger, Brian; Hirsch, Matthew LMucopolysaccharidosis type I (MPS I) is an autosomal recessive lysosomal storage disease characterized by severe phenotypes, including corneal clouding. MPS I is caused by mutations in alpha-l-iduronidase (IDUA), a ubiquitous enzyme that catalyzes the hydrolysis of glycosaminoglycans. Currently, no treatment exists to address MPS I corneal clouding other than corneal transplantation, which is complicated by a high risk for rejection. Investigation of an adeno-associated virus (AAV) IDUA gene addition strategy targeting the corneal stroma addresses this deficiency. In MPS I canines with early or advanced corneal disease, a single intrastromal AAV8G9-IDUA injection was well tolerated at all administered doses. The eyes with advanced disease demonstrated resolution of corneal clouding as early as 1 week post-injection, followed by sustained corneal transparency until the experimental endpoint of 25 weeks. AAV8G9-IDUA injection in the MPS I canine eye with early corneal disease prevented the development of advanced corneal changes while restoring clarity. Biodistribution studies demonstrated vector genomes in ocular compartments other than the cornea and in some systemic organs; however, a capsid antibody response was detected in only the highest dosed subject. Collectively, the results suggest that intrastromal AAV8G9-IDUA therapy prevents and reverses visual impairment associated with MPS I corneal clouding.