Browsing by Subject "Immune Evasion"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Open Access Enteroviruses: A Gut-Wrenching Game of Entry, Detection, and Evasion.(Viruses, 2019-05-21) Wells, Alexandra I; Coyne, Carolyn BEnteroviruses are a major source of human disease, particularly in neonates and young children where infections can range from acute, self-limited febrile illness to meningitis, endocarditis, hepatitis, and acute flaccid myelitis. The enterovirus genus includes poliovirus, coxsackieviruses, echoviruses, enterovirus 71, and enterovirus D68. Enteroviruses primarily infect by the fecal-oral route and target the gastrointestinal epithelium early during their life cycles. In addition, spread via the respiratory tract is possible and some enteroviruses such as enterovirus D68 are preferentially spread via this route. Once internalized, enteroviruses are detected by intracellular proteins that recognize common viral features and trigger antiviral innate immune signaling. However, co-evolution of enteroviruses with humans has allowed them to develop strategies to evade detection or disrupt signaling. In this review, we will discuss how enteroviruses infect the gastrointestinal tract, the mechanisms by which cells detect enterovirus infections, and the strategies enteroviruses use to escape this detection.Item Open Access Immune evasion pathways and the design of dendritic cell-based cancer vaccines.(Discov Med, 2016-02) Hanks, Brent AEmerging data is suggesting that the process of dendritic cell (DC) tolerization is an important step in tumorigenesis. Our understanding of the networks within the tumor microenvironment that functionally tolerize DC function is evolving while methods for genetically manipulating DC populations in situ continue to develop. A more intimate understanding of the paracrine signaling pathways which mediate immune evasion by subverting DC function promises to provide novel strategies for improving the clinical efficacy of DC-based cancer vaccines. This will likely require a better understanding of both the antigen expression profile and the immune evasion network of the tumor and its associated stromal tissues.Item Open Access Immunological and virological mechanisms of vaccine-mediated protection against SIV and HIV.(Nature, 2014-01-23) Roederer, Mario; Keele, Brandon F; Schmidt, Stephen D; Mason, Rosemarie D; Welles, Hugh C; Fischer, Will; Labranche, Celia; Foulds, Kathryn E; Louder, Mark K; Yang, Zhi-Yong; Todd, John-Paul M; Buzby, Adam P; Mach, Linh V; Shen, Ling; Seaton, Kelly E; Ward, Brandy M; Bailer, Robert T; Gottardo, Raphael; Gu, Wenjuan; Ferrari, Guido; Alam, S Munir; Denny, Thomas N; Montefiori, David C; Tomaras, Georgia D; Korber, Bette T; Nason, Martha C; Seder, Robert A; Koup, Richard A; Letvin, Norman L; Rao, Srinivas S; Nabel, Gary J; Mascola, John RA major challenge for the development of a highly effective AIDS vaccine is the identification of mechanisms of protective immunity. To address this question, we used a nonhuman primate challenge model with simian immunodeficiency virus (SIV). We show that antibodies to the SIV envelope are necessary and sufficient to prevent infection. Moreover, sequencing of viruses from breakthrough infections revealed selective pressure against neutralization-sensitive viruses; we identified a two-amino-acid signature that alters antigenicity and confers neutralization resistance. A similar signature confers resistance of human immunodeficiency virus (HIV)-1 to neutralization by monoclonal antibodies against variable regions 1 and 2 (V1V2), suggesting that SIV and HIV share a fundamental mechanism of immune escape from vaccine-elicited or naturally elicited antibodies. These analyses provide insight into the limited efficacy seen in HIV vaccine trials.Item Open Access Preexisting compensatory amino acids compromise fitness costs of a HIV-1 T cell escape mutation.(Retrovirology, 2014-11-19) Liu, Donglai; Zuo, Tao; Hora, Bhavna; Song, Hongshuo; Kong, Wei; Yu, Xianghui; Goonetilleke, Nilu; Bhattacharya, Tanmoy; Perelson, Alan S; Haynes, Barton F; McMichael, Andrew J; Gao, FengBACKGROUND: Fitness costs and slower disease progression are associated with a cytolytic T lymphocyte (CTL) escape mutation T242N in Gag in HIV-1-infected individuals carrying HLA-B*57/5801 alleles. However, the impact of different context in diverse HIV-1 strains on the fitness costs due to the T242N mutation has not been well characterized. To better understand the extent of fitness costs of the T242N mutation and the repair of fitness loss through compensatory amino acids, we investigated its fitness impact in different transmitted/founder (T/F) viruses. RESULTS: The T242N mutation resulted in various levels of fitness loss in four different T/F viruses. However, the fitness costs were significantly compromised by preexisting compensatory amino acids in (Isoleucine at position 247) or outside (glutamine at position 219) the CTL epitope. Moreover, the transmitted T242N escape mutant in subject CH131 was as fit as the revertant N242T mutant and the elimination of the compensatory amino acid I247 in the T/F viral genome resulted in significant fitness cost, suggesting the fitness loss caused by the T242N mutation had been fully repaired in the donor at transmission. Analysis of the global circulating HIV-1 sequences in the Los Alamos HIV Sequence Database showed a high prevalence of compensatory amino acids for the T242N mutation and other T cell escape mutations. CONCLUSIONS: Our results show that the preexisting compensatory amino acids in the majority of circulating HIV-1 strains could significantly compromise the fitness loss due to CTL escape mutations and thus increase challenges for T cell based vaccines.Item Open Access Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9.(Nature, 2011-11-23) McLellan, JS; Pancera, M; Carrico, C; Gorman, J; Julien, JP; Khayat, R; Louder, R; Pejchal, R; Sastry, M; Dai, K; O'Dell, S; Patel, N; Shahzad ul Hussan, S; Yang, Y; Zhang, B; Zhou, T; Zhu, J; Boyington, JC; Chuang, GY; Diwanji, D; Georgiev, I; Kwon, YD; Lee, D; Louder, MK; Moquin, S; Schmidt, SD; Yang, ZY; Bonsignori, M; Crump, JA; Kapiga, SH; Sam, NE; Haynes, BF; Burton, DR; Koff, WC; Walker, LM; Phogat, S; Wyatt, R; Orwenyo, J; Wang, LX; Arthos, J; Bewley, CA; Mascola, JR; Nabel, GJ; Schief, WR; Ward, AB; Wilson, IA; Kwong, PDVariable regions 1 and 2 (V1/V2) of human immunodeficiency virus-1 (HIV-1) gp120 envelope glycoprotein are critical for viral evasion of antibody neutralization, and are themselves protected by extraordinary sequence diversity and N-linked glycosylation. Human antibodies such as PG9 nonetheless engage V1/V2 and neutralize 80% of HIV-1 isolates. Here we report the structure of V1/V2 in complex with PG9. V1/V2 forms a four-stranded β-sheet domain, in which sequence diversity and glycosylation are largely segregated to strand-connecting loops. PG9 recognition involves electrostatic, sequence-independent and glycan interactions: the latter account for over half the interactive surface but are of sufficiently weak affinity to avoid autoreactivity. The structures of V1/V2-directed antibodies CH04 and PGT145 indicate that they share a common mode of glycan penetration by extended anionic loops. In addition to structurally defining V1/V2, the results thus identify a paradigm of antibody recognition for highly glycosylated antigens, which-with PG9-involves a site of vulnerability comprising just two glycans and a strand.Item Open Access The impact of host immune status on the within-host and population dynamics of antigenic immune escape.(J R Soc Interface, 2012-10-07) Luo, Shishi; Reed, Michael; Mattingly, Jonathan C; Koelle, KatiaAntigenically evolving pathogens such as influenza viruses are difficult to control owing to their ability to evade host immunity by producing immune escape variants. Experimental studies have repeatedly demonstrated that viral immune escape variants emerge more often from immunized hosts than from naive hosts. This empirical relationship between host immune status and within-host immune escape is not fully understood theoretically, nor has its impact on antigenic evolution at the population level been evaluated. Here, we show that this relationship can be understood as a trade-off between the probability that a new antigenic variant is produced and the level of viraemia it reaches within a host. Scaling up this intra-host level trade-off to a simple population level model, we obtain a distribution for variant persistence times that is consistent with influenza A/H3N2 antigenic variant data. At the within-host level, our results show that target cell limitation, or a functional equivalent, provides a parsimonious explanation for how host immune status drives the generation of immune escape mutants. At the population level, our analysis also offers an alternative explanation for the observed tempo of antigenic evolution, namely that the production rate of immune escape variants is driven by the accumulation of herd immunity. Overall, our results suggest that disease control strategies should be further assessed by considering the impact that increased immunity--through vaccination--has on the production of new antigenic variants.Item Restricted Transmission of single HIV-1 genomes and dynamics of early immune escape revealed by ultra-deep sequencing.(PLoS One, 2010-08-20) Fischer, Will; Ganusov, Vitaly V; Giorgi, Elena E; Hraber, Peter T; Keele, Brandon F; Leitner, Thomas; Han, Cliff S; Gleasner, Cheryl D; Green, Lance; Lo, Chien-Chi; Nag, Ambarish; Wallstrom, Timothy C; Wang, Shuyi; McMichael, Andrew J; Haynes, Barton F; Hahn, Beatrice H; Perelson, Alan S; Borrow, Persephone; Shaw, George M; Bhattacharya, Tanmoy; Korber, Bette TWe used ultra-deep sequencing to obtain tens of thousands of HIV-1 sequences from regions targeted by CD8+ T lymphocytes from longitudinal samples from three acutely infected subjects, and modeled viral evolution during the critical first weeks of infection. Previous studies suggested that a single virus established productive infection, but these conclusions were tempered because of limited sampling; now, we have greatly increased our confidence in this observation through modeling the observed earliest sample diversity based on vastly more extensive sampling. Conventional sequencing of HIV-1 from acute/early infection has shown different patterns of escape at different epitopes; we investigated the earliest escapes in exquisite detail. Over 3-6 weeks, ultradeep sequencing revealed that the virus explored an extraordinary array of potential escape routes in the process of evading the earliest CD8 T-lymphocyte responses--using 454 sequencing, we identified over 50 variant forms of each targeted epitope during early immune escape, while only 2-7 variants were detected in the same samples via conventional sequencing. In contrast to the diversity seen within epitopes, non-epitope regions, including the Envelope V3 region, which was sequenced as a control in each subject, displayed very low levels of variation. In early infection, in the regions sequenced, the consensus forms did not have a fitness advantage large enough to trigger reversion to consensus amino acids in the absence of immune pressure. In one subject, a genetic bottleneck was observed, with extensive diversity at the second time point narrowing to two dominant escape forms by the third time point, all within two months of infection. Traces of immune escape were observed in the earliest samples, suggesting that immune pressure is present and effective earlier than previously reported; quantifying the loss rate of the founder virus suggests a direct role for CD8 T-lymphocyte responses in viral containment after peak viremia. Dramatic shifts in the frequencies of epitope variants during the first weeks of infection revealed a complex interplay between viral fitness and immune escape.