Browsing by Subject "Immunization"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Open Access Differential Killing of Salmonella enterica Serovar Typhi by Antibodies Targeting Vi and Lipopolysaccharide O:9 Antigen.(PLoS One, 2016) Hart, Peter J; O'Shaughnessy, Colette M; Siggins, Matthew K; Bobat, Saeeda; Kingsley, Robert A; Goulding, David A; Crump, John A; Reyburn, Hugh; Micoli, Francesca; Dougan, Gordon; Cunningham, Adam F; MacLennan, Calman ASalmonella enterica serovar Typhi expresses a capsule of Vi polysaccharide, while most Salmonella serovars, including S. Enteritidis and S. Typhimurium, do not. Both S. Typhi and S. Enteritidis express the lipopolysaccharide O:9 antigen, yet there is little evidence of cross-protection from anti-O:9 antibodies. Vaccines based on Vi polysaccharide have efficacy against typhoid fever, indicating that antibodies against Vi confer protection. Here we investigate the role of Vi capsule and antibodies against Vi and O:9 in antibody-dependent complement- and phagocyte-mediated killing of Salmonella. Using isogenic Vi-expressing and non-Vi-expressing derivatives of S. Typhi and S. Typhimurium, we show that S. Typhi is inherently more sensitive to serum and blood than S. Typhimurium. Vi expression confers increased resistance to both complement- and phagocyte-mediated modalities of antibody-dependent killing in human blood. The Vi capsule is associated with reduced C3 and C5b-9 deposition, and decreased overall antibody binding to S. Typhi. However, purified human anti-Vi antibodies in the presence of complement are able to kill Vi-expressing Salmonella, while killing by anti-O:9 antibodies is inversely related to Vi expression. Human serum depleted of antibodies to antigens other than Vi retains the ability to kill Vi-expressing bacteria. Our findings support a protective role for Vi capsule in preventing complement and phagocyte killing of Salmonella that can be overcome by specific anti-Vi antibodies, but only to a limited extent by anti-O:9 antibodies.Item Open Access Identification of autoantigens recognized by the 2F5 and 4E10 broadly neutralizing HIV-1 antibodies.(J Exp Med, 2013-02-11) Yang, Guang; Holl, T Matt; Liu, Yang; Li, Yi; Lu, Xiaozhi; Nicely, Nathan I; Kepler, Thomas B; Alam, S Munir; Liao, Hua-Xin; Cain, Derek W; Spicer, Leonard; VandeBerg, John L; Haynes, Barton F; Kelsoe, GarnettMany human monoclonal antibodies that neutralize multiple clades of HIV-1 are polyreactive and bind avidly to mammalian autoantigens. Indeed, the generation of neutralizing antibodies to the 2F5 and 4E10 epitopes of HIV-1 gp41 in man may be proscribed by immune tolerance because mice expressing the V(H) and V(L) regions of 2F5 have a block in B cell development that is characteristic of central tolerance. This developmental blockade implies the presence of tolerizing autoantigens that are mimicked by the membrane-proximal external region of HIV-1 gp41. We identify human kynureninase (KYNU) and splicing factor 3b subunit 3 (SF3B3) as the primary conserved, vertebrate self-antigens recognized by the 2F5 and 4E10 antibodies, respectively. 2F5 binds the H4 domain of KYNU which contains the complete 2F5 linear epitope (ELDKWA). 4E10 recognizes an epitope of SF3B3 that is strongly dependent on hydrophobic interactions. Opossums carry a rare KYNU H4 domain that abolishes 2F5 binding, but they retain the SF3B3 4E10 epitope. Immunization of opossums with HIV-1 gp140 induced extraordinary titers of serum antibody to the 2F5 ELDKWA epitope but little or nothing to the 4E10 determinant. Identification of structural motifs shared by vertebrates and HIV-1 provides direct evidence that immunological tolerance can impair humoral responses to HIV-1.Item Restricted Immunization with cocktail of HIV-derived peptides in montanide ISA-51 is immunogenic, but causes sterile abscesses and unacceptable reactogenicity.(PLoS One, 2010-08-10) Graham, Barney S; McElrath, M Juliana; Keefer, Michael C; Rybczyk, Kyle; Berger, David; Weinhold, Kent J; Ottinger, Janet; Ferarri, Guido; Montefiori, David C; Stablein, Don; Smith, Carol; Ginsberg, Richard; Eldridge, John; Duerr, Ann; Fast, Pat; Haynes, Barton F; AIDS Vaccine Evaluation GroupBACKGROUND: A peptide vaccine was produced containing B and T cell epitopes from the V3 and C4 Envelope domains of 4 subtype B HIV-1 isolates (MN, RF, CanO, & Ev91). The peptide mixture was formulated as an emulsion in incomplete Freund's adjuvant (IFA). METHODS: Low-risk, healthy adult subjects were enrolled in a randomized, placebo-controlled dose-escalation study, and selected using criteria specifying that 50% in each study group would be HLA-B7+. Immunizations were scheduled at 0, 1, and 6 months using a total peptide dose of 1 or 4 mg. Adaptive immune responses in16 vaccine recipients and two placebo recipients after the 2nd immunization were evaluated using neutralization assays of sera, as well as ELISpot and ICS assays of cryopreserved PBMCs to assess CD4 and CD8 T-cell responses. In addition, (51)Cr release assays were performed on fresh PBMCs following 14-day stimulation with individual vaccine peptide antigens. RESULTS: 24 subjects were enrolled; 18 completed 2 injections. The study was prematurely terminated because 4 vaccinees developed prolonged pain and sterile abscess formation at the injection site-2 after dose 1, and 2 after dose 2. Two other subjects experienced severe systemic reactions consisting of headache, chills, nausea, and myalgia. Both reactions occurred after the second 4 mg dose. The immunogenicity assessments showed that 6/8 vaccinees at each dose level had detectable MN-specific neutralizing (NT) activity, and 2/7 HLA-B7+ vaccinees had classical CD8 CTL activity detected. However, using both ELISpot and ICS, 8/16 vaccinees (5/7 HLA-B7+) and 0/2 controls had detectable vaccine-specific CD8 T-cell responses. Subjects with moderate or severe systemic or local reactions tended to have more frequent T cell responses and higher antibody responses than those with mild or no reactions. CONCLUSIONS: The severity of local responses related to the formulation of these four peptides in IFA is clinically unacceptable for continued development. Both HIV-specific antibody and T cell responses were induced and the magnitude of response correlated with the severity of local and systemic reactions. If potent adjuvants are necessary for subunit vaccines to induce broad and durable immune responses, careful, incremental clinical evaluation is warranted to minimize the risk of adverse events. TRIAL REGISTRATION: ClinicalTrials.gov NCT00000886.Item Open Access In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. V. Affinity maturation develops in two stages of clonal selection.(J Exp Med, 1998-03-16) Takahashi, Y; Dutta, PR; Cerasoli, DM; Kelsoe, GTo examine the role of germinal centers (GCs) in the generation and selection of high affinity antibody-forming cells (AFCs), we have analyzed the average affinity of (4-hydroxy-3-nitrophenyl)acetyl (NP)-specific AFCs and serum antibodies both during and after the GC phase of the immune response. In addition, the genetics of NP-binding AFCs were followed to monitor the generation and selection of high affinity AFCs at the clonal level. NP-binding AFCs gradually accumulate in bone marrow (BM) after immunization and BM becomes the predominant locale of specific AFCs in the late primary response. Although the average affinity of NP-specific BM AFCs rapidly increased while GCs were present (GC phase), the affinity of both BM AFCs and serum antibodies continued to increase even after GCs waned (post-GC phase). Affinity maturation in the post-GC phase was also reflected in a shift in the distribution of somatic mutations as well as in the CDR3 sequences of BM AFC antibody heavy chain genes. Disruption of GCs by injection of antibody specific for CD154 (CD40 ligand) decreased the average affinity of subsequent BM AFCs, suggesting that GCs generate the precursors of high affinity BM AFCs; inhibition of CD154-dependent cellular interactions after the GC reaction was complete had no effect on high affinity BM AFCs. Interestingly, limited affinity maturation in the BM AFC compartment still occurs during the late primary response even after treatment with anti-CD154 antibody. Thus, GCs are necessary for the generation of high affinity AFC precursors but are not the only sites for the affinity-driven clonal selection responsible for the maturation of humoral immune responses.Item Open Access Non-reassuring fetal status: Case definition & guidelines for data collection, analysis, and presentation of immunization safety data.(Vaccine, 2016-12-01) Gravett, Courtney; Eckert, Linda O; Gravett, Michael G; Dudley, Donald J; Stringer, Elizabeth M; Mujobu, Tresor Bodjick Muena; Lyabis, Olga; Kochhar, Sonali; Swamy, Geeta K; Brighton Collaboration Non-reassuring fetal status Working GroupItem Open Access Similar T-cell immune responses induced by group M consensus env immunogens with wild-type or minimum consensus variable regions.(AIDS Res Hum Retroviruses, 2010-05) Weaver, EA; Camacho, ZT; Gao, FConsensus HIV-1 genes can decrease the genetic distances between candidate immunogens and field virus strains. To ensure the functionality and optimal presentation of immunologic epitopes, we generated two group-M consensus env genes that contain variable regions either from a wild-type B/C recombinant virus isolate (CON6) or minimal consensus elements (CON-S) in the V1, V2, V4, and V5 regions. C57BL/6 and BALB/c mice were primed twice with CON6, CON-S, and subtype control (92UG37_A and HXB2/Bal_B) DNA and boosted with recombinant vaccinia virus (rVV). Mean antibody titers against 92UG37_A, 89.6_B, 96ZM651_C, CON6, and CON-S Env protein were determined. Both CON6 and CON-S induced higher mean antibody titers against several of the proteins, as compared with the subtype controls. However, no significant differences were found in mean antibody titers in animals immunized with CON6 or CON-S. Cellular immune responses were measured by using five complete Env overlapping peptide sets: subtype A (92UG37_A), subtype B (MN_B, 89.6_B and SF162_B), and subtype C (Chn19_C). The intensity of the induced cellular responses was measured by using pooled Env peptides; T-cell epitopes were identified by using matrix peptide pools and individual peptides. No significant differences in T-cell immune-response intensities were noted between CON6 and CON-S immunized BALB/c and C57BL/6 mice. In BALB/c mice, 10 and eight nonoverlapping T-cell epitopes were identified in CON6 and CON-S, whereas eight epitopes were identified in 92UG37_A and HXB2/BAL_B. In C57BL/6 mice, nine and six nonoverlapping T-cell epitopes were identified after immunization with CON6 and CON-S, respectively, whereas only four and three were identified in 92UG37_A and HXB2/BAL_B, respectively. When combined together from both mouse strains, 18 epitopes were identified. The group M artificial consensus env genes, CON6 and CON-S, were equally immunogenic in breadth and intensity for inducing humoral and cellular immune responses.Item Open Access Stabilized HIV-1 envelope immunization induces neutralizing antibodies to the CD4bs and protects macaques against mucosal infection.(Science translational medicine, 2022-09) Saunders, Kevin O; Edwards, Robert J; Tilahun, Kedamawit; Manne, Kartik; Lu, Xiaozhi; Cain, Derek W; Wiehe, Kevin; Williams, Wilton B; Mansouri, Katayoun; Hernandez, Giovanna E; Sutherland, Laura; Scearce, Richard; Parks, Robert; Barr, Maggie; DeMarco, Todd; Eater, Chloe M; Eaton, Amanda; Morton, Georgeanna; Mildenberg, Benjamin; Wang, Yunfei; Rountree, R Wes; Tomai, Mark A; Fox, Christopher B; Moody, M Anthony; Alam, S Munir; Santra, Sampa; Lewis, Mark G; Denny, Thomas N; Shaw, George M; Montefiori, David C; Acharya, Priyamvada; Haynes, Barton FA successful HIV-1 vaccine will require induction of a polyclonal neutralizing antibody (nAb) response, yet vaccine-mediated induction of such a response in primates remains a challenge. We found that a stabilized HIV-1 CH505 envelope (Env) trimer formulated with a Toll-like receptor 7/8 agonist induced potent HIV-1 polyclonal nAbs that correlated with protection from homologous simian-human immunodeficiency virus (SHIV) infection. The serum dilution that neutralized 50% of virus replication (ID50 titer) required to protect 90% of macaques was 1:364 against the challenge virus grown in primary rhesus CD4+ T cells. Structural analyses of vaccine-induced nAbs demonstrated targeting of the Env CD4 binding site or the N156 glycan and the third variable loop base. Autologous nAb specificities similar to those elicited in macaques by vaccination were isolated from the human living with HIV from which the CH505 Env immunogen was derived. CH505 viral isolates were isolated that mutated the V1 to escape both the infection-induced and vaccine-induced antibodies. These results define the specificities of a vaccine-induced nAb response and the protective titers of HIV-1 vaccine-induced nAbs required to protect nonhuman primates from low-dose mucosal challenge by SHIVs bearing a primary transmitted/founder Env.