Browsing by Subject "Immunologic Memory"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Open Access Allo-Specific Humoral Responses: New Methods for Screening Donor-Specific Antibody and Characterization of HLA-Specific Memory B Cells.(Frontiers in immunology, 2021-01) Song, Shengli; Manook, Miriam; Kwun, Jean; Jackson, Annette M; Knechtle, Stuart J; Kelsoe, GarnettAntibody-mediated allograft rejection (AMR) causes more kidney transplant failure than any other single cause. AMR is mediated by antibodies recognizing antigens expressed by the graft, and antibodies generated against major histocompatibility complex (MHC) mismatches are especially problematic. Most research directed towards the management of clinical AMR has focused on identifying and characterizing circulating donor-specific HLA antibody (DSA) and optimizing therapies that reduce B-cell activation and/or block antibody secretion by inhibiting plasmacyte survival. Here we describe a novel set of reagents and techniques to allow more specific measurements of MHC sensitization across different animal transplant models. Additionally, we have used these approaches to isolate and clone individual HLA-specific B cells from patients sensitized by pregnancy or transplantation. We have identified and characterized the phenotypes of individual HLA-specific B cells, determined the V(D)J rearrangements of their paired H and L chains, and generated recombinant antibodies to determine affinity and specificity. Knowledge of the BCR genes of individual HLA-specific B cells will allow identification of clonally related B cells by high-throughput sequence analysis of peripheral blood mononuclear cells and permit us to re-construct the origins of HLA-specific B cells and follow their somatic evolution by mutation and selection.Item Open Access Analysis of memory B cell responses and isolation of novel monoclonal antibodies with neutralizing breadth from HIV-1-infected individuals.(PLoS One, 2010-01-20) Corti, Davide; Langedijk, Johannes PM; Hinz, Andreas; Seaman, Michael S; Vanzetta, Fabrizia; Fernandez-Rodriguez, Blanca M; Silacci, Chiara; Pinna, Debora; Jarrossay, David; Balla-Jhagjhoorsingh, Sunita; Willems, Betty; Zekveld, Maria J; Dreja, Hanna; O'Sullivan, Eithne; Pade, Corinna; Orkin, Chloe; Jeffs, Simon A; Montefiori, David C; Davis, David; Weissenhorn, Winfried; McKnight, Aine; Heeney, Jonathan L; Sallusto, Federica; Sattentau, Quentin J; Weiss, Robin A; Lanzavecchia, AntonioBACKGROUND: The isolation of human monoclonal antibodies (mAbs) that neutralize a broad spectrum of primary HIV-1 isolates and the characterization of the human neutralizing antibody B cell response to HIV-1 infection are important goals that are central to the design of an effective antibody-based vaccine. METHODS AND FINDINGS: We immortalized IgG(+) memory B cells from individuals infected with diverse clades of HIV-1 and selected on the basis of plasma neutralization profiles that were cross-clade and relatively potent. Culture supernatants were screened using various recombinant forms of the envelope glycoproteins (Env) in multiple parallel assays. We isolated 58 mAbs that were mapped to different Env surfaces, most of which showed neutralizing activity. One mAb in particular (HJ16) specific for a novel epitope proximal to the CD4 binding site on gp120 selectively neutralized a multi-clade panel of Tier-2 HIV-1 pseudoviruses, and demonstrated reactivity that was comparable in breadth, but distinct in neutralization specificity, to that of the other CD4 binding site-specific neutralizing mAb b12. A second mAb (HGN194) bound a conserved epitope in the V3 crown and neutralized all Tier-1 and a proportion of Tier-2 pseudoviruses tested, irrespective of clade. A third mAb (HK20) with broad neutralizing activity, particularly as a Fab fragment, recognized a highly conserved epitope in the HR-1 region of gp41, but showed striking assay-dependent selectivity in its activity. CONCLUSIONS: This study reveals that by using appropriate screening methods, a large proportion of memory B cells can be isolated that produce mAbs with HIV-1 neutralizing activity. Three of these mAbs show unusual breadth of neutralization and therefore add to the current panel of HIV-1 neutralizing antibodies with potential for passive protection and template-based vaccine design.Item Open Access Enhanced de novo alloantibody and antibody-mediated injury in rhesus macaques.(Am J Transplant, 2012-09) Page, EK; Page, AJ; Kwun, J; Gibby, AC; Leopardi, F; Jenkins, JB; Strobert, EA; Song, M; Hennigar, RA; Iwakoshi, N; Knechtle, SJChronic allograft rejection is a major impediment to long-term transplant success. Humoral immune responses to alloantigens are a growing clinical problem in transplantation, with mounting evidence associating alloantibodies with the development of chronic rejection. Nearly a third of transplant recipients develop de novo antibodies, for which no established therapies are effective at preventing or eliminating, highlighting the need for a nonhuman primate model of antibody-mediated rejection. In this report, we demonstrate that depletion using anti-CD3 immunotoxin (IT) combined with maintenance immunosuppression that included tacrolimus with or without alefacept reliably prolonged renal allograft survival in rhesus monkeys. In these animals, a preferential skewing toward CD4 repopulation and proliferation was observed, particularly with the addition of alefacept. Furthermore, alefacept-treated animals demonstrated increased alloantibody production (100%) and morphologic features of antibody-mediated injury. In vitro, alefacept was found to enhance CD4 effector memory T cell proliferation. In conclusion, alefacept administration after depletion and with tacrolimus promotes a CD4+memory T cell and alloantibody response, with morphologic changes reflecting antibody-mediated allograft injury. Early and consistent de novo alloantibody production with associated histological changes makes this nonhuman primate model an attractive candidate for evaluating targeted therapeutics.Item Open Access In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. IV. Affinity-dependent, antigen-driven B cell apoptosis in germinal centers as a mechanism for maintaining self-tolerance.(J Exp Med, 1995-12-01) Han, S; Zheng, B; Dal Porto, J; Kelsoe, GGerminal centers (GCs) are the sites of antigen-driven V(D)J gene hypermutation and selection necessary for the generation of high affinity memory B lymphocytes. Despite the antigen dependence of this reaction, injection of soluble antigen during an established primary immune response induces massive apoptotic death in GC B cells, but not in clonally related populations of nonfollicular B lymphoblasts and plasmacytes. Cell death in GCs occurs predominantly among light zone centrocytes, is antigen specific, and peaks within 4-8 h after injection. Antigen-induced programmed death does not involve cellular interactions mediated by CD40 ligand (CD40L) or Fas; disruption of GCs by antibody specific for CD40L was not driven by apoptosis and C57BL/6.lpr mice, though unable to express the Fas death trigger, remained fully susceptible to soluble antigen. Single injections of antigen did not significantly decrease GC numbers or average size, but repeated injections during an 18-h period resulted in fewer and substantially smaller GCs. As cell loss appeared most extensive in the light zone, decreased GC cellularity after prolonged exposure to soluble antigen implies that the Ig- centroblasts of the dark zone may require replenishment from light zone cells that have survived antigenic selection. GC cell death is avidity-dependent; oligovalent antigen induced relatively little apoptosis and GC B cells that survived long exposures to multivalent antigen expressed atypical VDJ rearrangements unlikely to encode high affinity antibody. Antigen-induced apoptotic death in GCs may represent a mechanism for the peripheral deletion of autoreactive B cell mutants much as the combinatorial repertoire of immature B lymphocytes is censored in the bone marrow.Item Open Access Partial splenectomy but not total splenectomy preserves immunoglobulin M memory B cells in mice.(Journal of pediatric surgery, 2011-09) Tracy, Elisabeth T; Haas, Karen M; Gentry, Tracy; Danko, Melissa; Roberts, Joseph L; Kurtzberg, Joanne; Rice, Henry EPurpose
The mechanism by which partial splenectomy preserves splenic immune function is unknown. Immunoglobulin (Ig) M memory B cells are critical for the immune response against encapsulated bacteria and are reduced in asplenic patients, although it is unknown whether partial splenectomy can preserve memory B cells. We hypothesized that IgM memory B cells (murine B-1a cells) would be preserved after partial splenectomy but not after total splenectomy in mice.Methods
We performed total splenectomy (n = 17), partial splenectomy (n = 10), or sham laparotomy (n = 16) on C57BL/6J mice. Mice were killed on postoperative day 10 or 30, and peritoneal washings were analyzed by multiparameter flow cytometry for expression of murine B-1a cells (IgM(pos)IgD(dull)CD5(pos)B220(dull)).Results
We found that B-1a cells were significantly reduced after both total and partial splenectomies compared with sham laparotomy in the early postoperative period, although normal levels of B-1a cells returned by postoperative day 30 in mice undergoing partial splenectomy but not total splenectomy.Conclusion
Partial splenectomy but not total splenectomy preserves the B-1a B-cell population in mice within 30 days after surgery. Maintenance of these critical B cells may contribute to the preservation of a splenic-dependent immune response after partial splenectomy.Item Open Access Very low affinity B cells form germinal centers, become memory B cells, and participate in secondary immune responses when higher affinity competition is reduced.(J Exp Med, 2002-05-06) Dal Porto, Joseph M; Haberman, Ann M; Kelsoe, Garnett; Shlomchik, Mark JTo understand the relationship between the affinity of the B cell antigen receptor (BCR) and the immune response to antigen, two lines of immunoglobulin H chain transgenic (Tg) mice were created. H50Gmu(a) and T1(V23)mu(a) mice express mu H chain transgenes that associate with the lambda1 L chains to bind the (4-hydroxy-3-nitrophenyl)acetyl hapten with association constants (K(a)s) of only 1.2 x 10(5) M(-1) and 3 x 10(4) M(-1), respectively. Both lines mounted substantial antibody-forming cell (AFC) and germinal center (GC) responses. H50Gmu(a) Tg mice also generated memory B cells. T1(V23)mu(a) B cells formed AFC and GCs, but were largely replaced in late GCs by antigen-specific cells that express endogenous BCRs. Thus, B lymphocytes carrying BCRs with affinities previously thought to be irrelevant in specific immune responses are in fact capable of complete T cell-dependent immune responses when relieved of substantial competition from other B cells. The failure to observe such B cells normally in late primary responses and in memory B cell populations is the result of competition, rather than an intrinsic inability of low affinity B cells.