Browsing by Subject "Immunophenotyping"
Now showing 1 - 14 of 14
Results Per Page
Sort Options
Item Open Access B7-H3-redirected chimeric antigen receptor T cells target glioblastoma and neurospheres.(EBioMedicine, 2019-09) Nehama, Dean; Di Ianni, Natalia; Musio, Silvia; Du, Hongwei; Patané, Monica; Pollo, Bianca; Finocchiaro, Gaetano; Park, James JH; Dunn, Denise E; Edwards, Drake S; Damrauer, Jeffrey S; Hudson, Hannah; Floyd, Scott R; Ferrone, Soldano; Savoldo, Barbara; Pellegatta, Serena; Dotti, GianpietroBackground
The dismal survival of glioblastoma (GBM) patients urgently calls for the development of new treatments. Chimeric antigen receptor T (CAR-T) cells are an attractive strategy, but preclinical and clinical studies in GBM have shown that heterogeneous expression of the antigens targeted so far causes tumor escape, highlighting the need for the identification of new targets. We explored if B7-H3 is a valuable target for CAR-T cells in GBM.Methods
We compared mRNA expression of antigens in GBM using TCGA data, and validated B7-H3 expression by immunohistochemistry. We then tested the antitumor activity of B7-H3-redirected CAR-T cells against GBM cell lines and patient-derived GBM neurospheres in vitro and in xenograft murine models.Findings
B7-H3 mRNA and protein are overexpressed in GBM relative to normal brain in all GBM subtypes. Of the 46 specimens analyzed by immunohistochemistry, 76% showed high B7-H3 expression, 22% had detectable, but low B7-H3 expression and 2% were negative, as was normal brain. All 20 patient-derived neurospheres showed ubiquitous B7-H3 expression. B7-H3-redirected CAR-T cells effectively targeted GBM cell lines and neurospheres in vitro and in vivo. No significant differences were found between CD28 and 4-1BB co-stimulation, although CD28-co-stimulated CAR-T cells released more inflammatory cytokines.Interpretation
We demonstrated that B7-H3 is highly expressed in GBM specimens and neurospheres that contain putative cancer stem cells, and that B7-H3-redirected CAR-T cells can effectively control tumor growth. Therefore, B7-H3 represents a promising target in GBM. FUND: Alex's Lemonade Stand Foundation; Il Fondo di Gio Onlus; National Cancer Institute; Burroughs Wellcome Fund.Item Open Access Characterization of CD4 and CD8 T cell responses in MuSK myasthenia gravis.(J Autoimmun, 2014-08) Yi, JS; Guidon, A; Sparks, S; Osborne, R; Juel, VC; Massey, JM; Sanders, DB; Weinhold, KJ; Guptill, JTMuscle specific tyrosine kinase myasthenia gravis (MuSK MG) is a form of autoimmune MG that predominantly affects women and has unique clinical features, including prominent bulbar weakness, muscle atrophy, and excellent response to therapeutic plasma exchange. Patients with MuSK MG have predominantly IgG4 autoantibodies directed against MuSK on the postsynaptic muscle membrane. Lymphocyte functionality has not been reported in this condition. The goal of this study was to characterize T cell responses in patients with MuSK MG. Intracellular production of IFN-gamma, TNF-alpha, IL-2, IL-17, and IL-21 by CD4+ and CD8+ T cells was measured by polychromatic flow cytometry in peripheral blood samples from 11 Musk MG patients and 10 healthy controls. Only one MuSK MG patient was not receiving immunosuppressive therapy. Regulatory T cells (Treg) were also included in our analysis to determine if changes in T cell function were due to altered Treg frequencies. CD8+ T cells from MuSK MG patients had higher frequencies of polyfunctional responses than controls, and CD4+ T cells had higher IL-2, TNF-alpha, and IL-17. MuSK MG patients had a higher percentage of CD4+ T cells producing combinations of IFN-gamma/IL-2/TNF-gamma, TNF-alpha/IL-2, and IFN-gamma/TNF-alpha. Interestingly, Treg numbers and CD39 expression were not different from control values. MuSK MG patients had increased frequencies of Th1 and Th17 cytokines and were primed for polyfunctional proinflammatory responses that cannot be explained by a defect in CD39 expression or Treg number.Item Open Access Clinical and pathological characteristics of HIV- and HHV-8-negative Castleman disease.(Blood, 2017-03) Yu, Li; Tu, Meifeng; Cortes, Jorge; Xu-Monette, Zijun Y; Miranda, Roberto N; Zhang, Jun; Zhang, Jun; Orlowski, Robert Z; Neelapu, Sattva; Boddu, Prajwal C; Akosile, Mary A; Uldrick, Thomas S; Yarchoan, Robert; Medeiros, L Jeffrey; Li, Yong; Fajgenbaum, David C; Young, Ken HCastleman disease (CD) comprises 3 poorly understood lymphoproliferative variants sharing several common histopathological features. Unicentric CD (UCD) is localized to a single region of lymph nodes. Multicentric CD (MCD) manifests with systemic inflammatory symptoms and organ dysfunction due to cytokine dysregulation and involves multiple lymph node regions. Human herpesvirus 8 (HHV-8) causes MCD (HHV-8-associated MCD) in immunocompromised individuals, such as HIV-infected patients. However, >50% of MCD cases are HIV and HHV-8 negative (defined as idiopathic [iMCD]). The clinical and biological behavior of CD remains poorly elucidated. Here, we analyzed the clinicopathologic features of 74 patients (43 with UCD and 31 with iMCD) and therapeutic response of 96 patients (43 with UCD and 53 with iMCD) with HIV-/HHV-8-negative CD compared with 51 HIV-/HHV-8-positive patients. Systemic inflammatory symptoms and elevated inflammatory factors were more common in iMCD patients than UCD patients. Abnormal bone marrow features were more frequent in iMCD (77.0%) than UCD (45%); the most frequent was plasmacytosis, which was seen in 3% to 30.4% of marrow cells. In the lymph nodes, higher numbers of CD3+ lymphocytes (median, 58.88 ± 20.57) and lower frequency of CD19+/CD5+ (median, 5.88 ± 6.52) were observed in iMCD patients compared with UCD patients (median CD3+ cells, 43.19 ± 17.37; median CD19+/CD5+ cells, 17.37 ± 15.80). Complete surgical resection is a better option for patients with UCD. Siltuximab had a greater proportion of complete responses and longer progression-free survival (PFS) for iMCD than rituximab. Centricity, histopathological type, and anemia significantly impacted PFS. This study reveals that CD represents a heterogeneous group of diseases with differential immunophenotypic profiling and treatment response.Item Open Access Comprehensive gene expression profiling and immunohistochemical studies support application of immunophenotypic algorithm for molecular subtype classification in diffuse large B-cell lymphoma: a report from the International DLBCL Rituximab-CHOP Consortium Program Study.(Leukemia, 2012-09) Visco, C; Li, Y; Xu-Monette, ZY; Miranda, RN; Green, TM; Li, Y; Tzankov, A; Wen, W; Liu, W-M; Kahl, BS; d'Amore, ESG; Montes-Moreno, S; Dybkær, K; Chiu, A; Tam, W; Orazi, A; Zu, Y; Bhagat, G; Winter, JN; Wang, H-Y; O'Neill, S; Dunphy, CH; Hsi, ED; Zhao, XF; Go, RS; Choi, WWL; Zhou, F; Czader, M; Tong, J; Zhao, X; van Krieken, JH; Huang, Q; Ai, W; Etzell, J; Ponzoni, M; Ferreri, AJM; Piris, MA; Møller, MB; Bueso-Ramos, CE; Medeiros, LJ; Wu, L; Young, KHGene expression profiling (GEP) has stratified diffuse large B-cell lymphoma (DLBCL) into molecular subgroups that correspond to different stages of lymphocyte development-namely germinal center B-cell like and activated B-cell like. This classification has prognostic significance, but GEP is expensive and not readily applicable into daily practice, which has lead to immunohistochemical algorithms proposed as a surrogate for GEP analysis. We assembled tissue microarrays from 475 de novo DLBCL patients who were treated with rituximab-CHOP chemotherapy. All cases were successfully profiled by GEP on formalin-fixed, paraffin-embedded tissue samples. Sections were stained with antibodies reactive with CD10, GCET1, FOXP1, MUM1 and BCL6 and cases were classified following a rationale of sequential steps of differentiation of B cells. Cutoffs for each marker were obtained using receiver-operating characteristic curves, obviating the need for any arbitrary method. An algorithm based on the expression of CD10, FOXP1 and BCL6 was developed that had a simpler structure than other recently proposed algorithms and 92.6% concordance with GEP. In multivariate analysis, both the International Prognostic Index and our proposed algorithm were significant independent predictors of progression-free and overall survival. In conclusion, this algorithm effectively predicts prognosis of DLBCL patients matching GEP subgroups in the era of rituximab therapy.Item Open Access Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets.(J Immunol, 2011-03-15) Michalek, Ryan D; Gerriets, Valerie A; Jacobs, Sarah R; Macintyre, Andrew N; MacIver, Nancie J; Mason, Emily F; Sullivan, Sarah A; Nichols, Amanda G; Rathmell, Jeffrey CStimulated CD4(+) T lymphocytes can differentiate into effector T cell (Teff) or inducible regulatory T cell (Treg) subsets with specific immunological roles. We show that Teff and Treg require distinct metabolic programs to support these functions. Th1, Th2, and Th17 cells expressed high surface levels of the glucose transporter Glut1 and were highly glycolytic. Treg, in contrast, expressed low levels of Glut1 and had high lipid oxidation rates. Consistent with glycolysis and lipid oxidation promoting Teff and Treg, respectively, Teff were selectively increased in Glut1 transgenic mice and reliant on glucose metabolism, whereas Treg had activated AMP-activated protein kinase and were dependent on lipid oxidation. Importantly, AMP-activated protein kinase stimulation was sufficient to decrease Glut1 and increase Treg generation in an asthma model. These data demonstrate that CD4(+) T cell subsets require distinct metabolic programs that can be manipulated in vivo to control Treg and Teff development in inflammatory diseases.Item Open Access Donor cell leukemia in umbilical cord blood transplant patients: a case study and literature review highlighting the importance of molecular engraftment analysis.(The Journal of molecular diagnostics : JMD, 2010-07) Crow, Jennifer; Youens, Kenneth; Michalowski, Susan; Perrine, Gail; Emhart, Cassandra; Johnson, Felicia; Gerling, Amy; Kurtzberg, Joanne; Goodman, Barbara K; Sebastian, Siby; Rehder, Catherine W; Datto, Michael BDonor cell neoplasms are rare complications of treatment regimens that involve stem cell transplantation for hematological malignancies, myelodysplastic processes, or certain genetic or metabolic disorders. We report a case of donor cell leukemia in a pediatric patient with a history of acute myeloid leukemia that manifested as recurrent AML FAB type M5 fourteen months after umbilical cord blood transplantation. Although there was some immunophenotypic drift from the patient's original AML and their posttransplant presentation, the initial pathological impression was of recurrent disease. Bone marrow engraftment analysis by multiplex PCR of short tandem repeat markers performed on the patient's diagnostic specimen showed complete engraftment by donor cells, with a loss of heterozygosity in the donor alleles on chromosome 7. This led to the reinterpretation of this patient's disease as donor-derived leukemia. This interpretation was supported by a routine karyotype and fluorescence in situ hybridization analysis showing loss of chromosome 7 and a male (donor) chromosome complement in this female patient. Also noted was a loss of the patient's presenting chromosomal abnormality, t(11;19)(q23;p13). This case highlights the need for close coordination between all aspects of clinical testing for the transplant patient, including molecular engraftment studies, when distinguishing the very common complication of recurrent disease from the exceedingly rare complication of donor cell leukemia.Item Open Access Human umbilical cord blood monocytes, but not adult blood monocytes, rescue brain cells from hypoxic-ischemic injury: Mechanistic and therapeutic implications.(PloS one, 2019-01) Saha, Arjun; Patel, Sachit; Xu, Li; Scotland, Paula; Schwartzman, Jonathan; Filiano, Anthony J; Kurtzberg, Joanne; Balber, Andrew ECord blood (CB) mononuclear cells (MNC) are being tested in clinical trials to treat hypoxic-ischemic (HI) brain injuries. Although early results are encouraging, mechanisms underlying potential clinical benefits are not well understood. To explore these mechanisms further, we exposed mouse brain organotypic slice cultures to oxygen and glucose deprivation (OGD) and then treated the brain slices with cells from CB or adult peripheral blood (PB). We found that CB-MNCs protect neurons from OGD-induced death and reduced both microglial and astrocyte activation. PB-MNC failed to affect either outcome. The protective activities were largely mediated by factors secreted by CB-MNC, as direct cell-to-cell contact between the injured brain slices and CB cells was not essential. To determine if a specific subpopulation of CB-MNC are responsible for these protective activities, we depleted CB-MNC of various cell types and found that only removal of CB CD14+ monocytes abolished neuroprotection. We also used positively selected subpopulations of CB-MNC and PB-MNC in this assay and demonstrated that purified CB-CD14+ cells, but not CB-PB CD14+ cells, efficiently protected neuronal cells from death and reduced glial activation following OGD. Gene expression microarray analysis demonstrated that compared to PB-CD14+ monocytes, CB-CD14+ monocytes over-expressed several secreted proteins with potential to protect neurons. Differential expression of five candidate effector molecules, chitinase 3-like protein-1, inhibin-A, interleukin-10, matrix metalloproteinase-9 and thrombospondin-1, were confirmed by western blotting, and immunofluorescence. These findings suggest that CD14+ monocytes are a critical cell-type when treating HI with CB-MNC.Item Open Access Induced pluripotent stem cell-derived cardiac progenitors differentiate to cardiomyocytes and form biosynthetic tissues.(PLoS One, 2013) Christoforou, Nicolas; Liau, Brian; Chakraborty, Syandan; Chellapan, Malathi; Bursac, Nenad; Leong, Kam WThe mammalian heart has little capacity to regenerate, and following injury the myocardium is replaced by non-contractile scar tissue. Consequently, increased wall stress and workload on the remaining myocardium leads to chamber dilation, dysfunction, and heart failure. Cell-based therapy with an autologous, epigenetically reprogrammed, and cardiac-committed progenitor cell source could potentially reverse this process by replacing the damaged myocardium with functional tissue. However, it is unclear whether cardiac progenitor cell-derived cardiomyocytes are capable of attaining levels of structural and functional maturity comparable to that of terminally-fated cardiomyocytes. Here, we first describe the derivation of mouse induced pluripotent stem (iPS) cells, which once differentiated allow for the enrichment of Nkx2-5(+) cardiac progenitors, and the cardiomyocyte-specific expression of the red fluorescent protein. We show that the cardiac progenitors are multipotent and capable of differentiating into endothelial cells, smooth muscle cells and cardiomyocytes. Moreover, cardiac progenitor selection corresponds to cKit(+) cell enrichment, while cardiomyocyte cell-lineage commitment is concomitant with dual expression of either cKit/Flk1 or cKit/Sca-1. We proceed to show that the cardiac progenitor-derived cardiomyocytes are capable of forming electrically and mechanically coupled large-scale 2D cell cultures with mature electrophysiological properties. Finally, we examine the cell progenitors' ability to form electromechanically coherent macroscopic tissues, using a physiologically relevant 3D culture model and demonstrate that following long-term culture the cardiomyocytes align, and form robust electromechanical connections throughout the volume of the biosynthetic tissue construct. We conclude that the iPS cell-derived cardiac progenitors are a robust cell source for tissue engineering applications and a 3D culture platform for pharmacological screening and drug development studies.Item Open Access Inhibition of adaptive immune responses leads to a fatal clinical outcome in SIV-infected pigtailed macaques but not vervet African green monkeys.(PLoS Pathog, 2009-12) Schmitz, Jörn E; Zahn, Roland C; Brown, Charles R; Rett, Melisa D; Li, Ming; Tang, Haili; Pryputniewicz, Sarah; Byrum, Russell A; Kaur, Amitinder; Montefiori, David C; Allan, Jonathan S; Goldstein, Simoy; Hirsch, Vanessa MAfrican green monkeys (AGM) and other natural hosts for simian immunodeficiency virus (SIV) do not develop an AIDS-like disease following SIV infection. To evaluate differences in the role of SIV-specific adaptive immune responses between natural and nonnatural hosts, we used SIV(agmVer90) to infect vervet AGM and pigtailed macaques (PTM). This infection results in robust viral replication in both vervet AGM and pigtailed macaques (PTM) but only induces AIDS in the latter species. We delayed the development of adaptive immune responses through combined administration of anti-CD8 and anti-CD20 lymphocyte-depleting antibodies during primary infection of PTM (n = 4) and AGM (n = 4), and compared these animals to historical controls infected with the same virus. Lymphocyte depletion resulted in a 1-log increase in primary viremia and a 4-log increase in post-acute viremia in PTM. Three of the four PTM had to be euthanized within 6 weeks of inoculation due to massive CMV reactivation and disease. In contrast, all four lymphocyte-depleted AGM remained healthy. The lymphocyte-depleted AGM showed only a trend toward a prolongation in peak viremia but the groups were indistinguishable during chronic infection. These data show that adaptive immune responses are critical for controlling disease progression in pathogenic SIV infection in PTM. However, the maintenance of a disease-free course of SIV infection in AGM likely depends on a number of mechanisms including non-adaptive immune mechanisms.Item Open Access Molecular characteristics of mantle cell lymphoma presenting with clonal plasma cell component.(The American journal of surgical pathology, 2011-02) Visco, Carlo; Hoeller, Sylvia; Malik, Jeffrey T; Xu-Monette, Zijun Y; Wiggins, Michele L; Liu, Jessica; Sanger, Warren G; Liu, Zhongfeng; Chang, Julie; Ranheim, Erik A; Gradowski, Joel F; Serrano, Sergio; Wang, Huan-You; Liu, Qingquan; Dave, Sandeep; Olsen, Brian; Gascoyne, Randy D; Campo, Elias; Swerdlow, Steven H; Chan, Wing C; Tzankov, Alexander; Young, Ken HThe normal counterparts of mantle cell lymphoma (MCL) are naive, quiescent B cells that have not been processed through the germinal center (GC). For this reason, although lymphomas arising from GC or post-GC B cells often exhibit plasmacytic differentiation, MCL rarely presents with plasmacytic features. Seven cases of MCL with a monotypic plasma cell (PC) population were collected from 6 centers and were studied by immunohistochemistry, fluorescence immunophenotyping and interphase cytogenetics as a tool for the investigation of neoplasms analysis, capillary gel electrophoresis, and restriction fragment length polymorphism of immunoglobulin heavy chain analysis of microdissections of each of the MCL and PC populations to assess their clonal relationship. The clinical presentation was rather unusual compared with typical MCL, with 2 cases arising from the extranodal soft tissues of the head. All MCL cases were morphologically and immunohistochemically typical, bearing the t(11;14)(q13;q32). In all cases, the PC population was clonal. In 5 of the 7 cases, the MCL and PC clones showed identical restriction fragments, indicating a common clonal origin of the neoplastic population. The 2 cases with clonal diversity denoted the coexistence of 2 different tumors in a composite lymphoma/PC neoplasm. Our findings suggest that MCL can present with a PC component that is often clonally related to the lymphoma, representing a rare but unique biological variant of this tumor.Item Open Access Multiple phenotypic changes in mice after knockout of the B3gnt5 gene, encoding Lc3 synthase--a key enzyme in lacto-neolacto ganglioside synthesis.(BMC Dev Biol, 2010-11-18) Kuan, Chien-Tsun; Chang, Jinli; Mansson, Jan-Eric; Li, Jianjun; Pegram, Charles; Fredman, Pam; McLendon, Roger E; Bigner, Darell DBACKGROUND: Ganglioside biosynthesis occurs through a multi-enzymatic pathway which at the lactosylceramide step is branched into several biosynthetic series. Lc3 synthase utilizes a variety of galactose-terminated glycolipids as acceptors by establishing a glycosidic bond in the beta-1,3-linkage to GlcNaAc to extend the lacto- and neolacto-series gangliosides. In order to examine the lacto-series ganglioside functions in mice, we used gene knockout technology to generate Lc3 synthase gene B3gnt5-deficient mice by two different strategies and compared the phenotypes of the two null mouse groups with each other and with their wild-type counterparts. RESULTS: B3gnt5 gene knockout mutant mice appeared normal in the embryonic stage and, if they survived delivery, remained normal during early life. However, about 9% developed early-stage growth retardation, 11% died postnatally in less than 2 months, and adults tended to die in 5-15 months, demonstrating splenomegaly and notably enlarged lymph nodes. Without lacto-neolacto series gangliosides, both homozygous and heterozygous mice gradually displayed fur loss or obesity, and breeding mice demonstrated reproductive defects. Furthermore, B3gnt5 gene knockout disrupted the functional integrity of B cells, as manifested by a decrease in B-cell numbers in the spleen, germinal center disappearance, and less efficiency to proliferate in hybridoma fusion. CONCLUSIONS: These novel results demonstrate unequivocally that lacto-neolacto series gangliosides are essential to multiple physiological functions, especially the control of reproductive output, and spleen B-cell abnormality. We also report the generation of anti-IgG response against the lacto-series gangliosides 3'-isoLM1 and 3',6'-isoLD1.Item Open Access Shared monocyte subset phenotypes in HIV-1 infection and in uninfected subjects with acute coronary syndrome.(Blood, 2012-11-29) Funderburg, Nicholas T; Zidar, David A; Shive, Carey; Lioi, Anthony; Mudd, Joseph; Musselwhite, Laura W; Simon, Daniel I; Costa, Marco A; Rodriguez, Benigno; Sieg, Scott F; Lederman, Michael MThe mechanisms responsible for increased cardiovascular risk associated with HIV-1 infection are incompletely defined. Using flow cytometry, in the present study, we examined activation phenotypes of monocyte subpopulations in patients with HIV-1 infection or acute coronary syndrome to find common cellular profiles. Nonclassic (CD14(+)CD16(++)) and intermediate (CD14(++)CD16(+)) monocytes are proportionally increased and express high levels of tissue factor and CD62P in HIV-1 infection. These proportions are related to viremia, T-cell activation, and plasma levels of IL-6. In vitro exposure of whole blood samples from uninfected control donors to lipopolysaccharide increased surface tissue factor expression on all monocyte subsets, but exposure to HIV-1 resulted in activation only of nonclassic monocytes. Remarkably, the profile of monocyte activation in uncontrolled HIV-1 disease mirrors that of acute coronary syndrome in uninfected persons. Therefore, drivers of immune activation and inflammation in HIV-1 disease may alter monocyte subpopulations and activation phenotype, contributing to a pro-atherothrombotic state that may drive cardiovascular risk in HIV-1 infection.Item Open Access Synergistic Immuno Photothermal Nanotherapy (SYMPHONY) for the Treatment of Unresectable and Metastatic Cancers.(Scientific reports, 2017-08-17) Liu, Yang; Maccarini, Paolo; Palmer, Gregory M; Etienne, Wiguins; Zhao, Yulin; Lee, Chen-Ting; Ma, Xiumei; Inman, Brant A; Vo-Dinh, TuanMetastatic spread is the mechanism in more than 90 percent of cancer deaths and current therapeutic options, such as systemic chemotherapy, are often ineffective. Here we provide a proof of principle for a novel two-pronged modality referred to as Synergistic Immuno Photothermal Nanotherapy (SYMPHONY) having the potential to safely eradicate both primary tumors and distant metastatic foci. Using a combination of immune-checkpoint inhibition and plasmonic gold nanostar (GNS)-mediated photothermal therapy, we were able to achieve complete eradication of primary treated tumors and distant untreated tumors in some mice implanted with the MB49 bladder cancer cells. Delayed rechallenge with MB49 cancer cells injection in mice that appeared cured by SYMPHONY did not lead to new tumor formation after 60 days observation, indicating that SYMPHONY treatment induced effective long-lasting immunity against MB49 cancer cells.Item Open Access The Immunology Quality Assessment Proficiency Testing Program for CD3⁺4⁺ and CD3⁺8⁺ lymphocyte subsets: a ten year review via longitudinal mixed effects modeling.(Journal of Immunological Methods, 2014-07) Bainbridge, J; Wilkening, CL; Rountree, W; Louzao, R; Wong, J; Perza, N; Garcia, A; Denny, TNSince 1999, the National Institute of Allergy and Infectious Diseases Division of AIDS (NIAID DAIDS) has funded the Immunology Quality Assessment (IQA) Program with the goal of assessing proficiency in basic lymphocyte subset immunophenotyping for each North American laboratory supporting the NIAID DAIDS HIV clinical trial networks. Further, the purpose of this program is to facilitate an increase in the consistency of interlaboratory T-cell subset measurement (CD3(+)4(+)/CD3(+)8(+) percentages and absolute counts) and likewise, a decrease in intralaboratory variability. IQA T-cell subset measurement proficiency testing was performed over a ten-year period (January 2003-July 2012), and the results were analyzed via longitudinal analysis using mixed effects models. The goal of this analysis was to describe how a typical laboratory (a statistical modeling construct) participating in the IQA Program performed over time. Specifically, these models were utilized to examine trends in interlaboratory agreement, as well as successful passing of proficiency testing. Intralaboratory variability (i.e., precision) was determined by the repeated measures variance, while fixed and random effects were taken into account for changes in interlaboratory agreement (i.e., accuracy) over time. A flow cytometer (single-platform technology, SPT) or a flow cytometer/hematology analyzer (dual-platform technology, DPT) was also examined as a factor for accuracy and precision. The principal finding of this analysis was a significant (p<0.001) increase in accuracy of T-cell subset measurements over time, regardless of technology type (SPT or DPT). Greater precision was found in SPT measurements of all T-cell subset measurements (p<0.001), as well as greater accuracy of SPT on CD3(+)4(+)% and CD3(+)8(+)% assessments (p<0.05 and p<0.001, respectively). However, the interlaboratory random effects variance in DPT results indicates that for some cases DPT can have increased accuracy compared to SPT. Overall, these findings demonstrate that proficiency in and among IQA laboratories have, in general, improved over time and that platform type differences in performance do exist.