Browsing by Subject "Inhalation Exposure"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Inflammatory Cytokines and White Blood Cell Counts Response to Environmental Levels of Diesel Exhaust and Ozone Inhalation Exposures.(PloS one, 2016-01) Stiegel, Matthew A; Pleil, Joachim D; Sobus, Jon R; Madden, Michael CEpidemiological observations of urban inhalation exposures to diesel exhaust (DE) and ozone (O3) have shown pre-clinical cardiopulmonary responses in humans. Identifying the key biological mechanisms that initiate these health bioindicators is difficult due to variability in environmental exposure in time and from person to person. Previously, environmentally controlled human exposure chambers have been used to study DE and O3 dose-response patterns separately, but investigation of co-exposures has not been performed under controlled conditions. Because a mixture is a more realistic exposure scenario for the general public, in this study we investigate the relationships of urban levels of urban-level DE exposure (300 μg/m3), O3 (0.3 ppm), DE + O3 co-exposure, and innate immune system responses. Fifteen healthy human volunteers were studied for changes in ten inflammatory cytokines (interleukins 1β, 2, 4, 5, 8, 10, 12p70 and 13, IFN-γ, and TNF-α) and counts of three white blood cell types (lymphocytes, monocytes, and neutrophils) following controlled exposures to DE, O3, and DE+O3. The results show subtle cytokines responses to the diesel-only and ozone-only exposures, and that a more complex (possibly synergistic) relationship exists in the combination of these two exposures with suppression of IL-5, IL-12p70, IFN-γ, and TNF-α that persists up to 22-hours for IFN-γ and TNF-α. The white blood cell differential counts showed significant monocyte and lymphocyte decreases and neutrophil increases following the DE + O3 exposure; lymphocytes and neutrophils changes also persist for at least 22-hours. Because human studies must be conducted under strict safety protocols at environmental levels, these effects are subtle and are generally only seen with detailed statistical analysis. This study indicates that the observed associations between environmental exposures and cardiopulmonary effects are possibly mediated by inflammatory response mechanisms.Item Open Access Long-term dynamics of death rates of emphysema, asthma, and pneumonia and improving air quality.(Int J Chron Obstruct Pulmon Dis, 2014) Kravchenko, J; Akushevich, I; Abernathy, AP; Holman, S; Ross, WG; Lyerly, HKBACKGROUND: The respiratory tract is a major target of exposure to air pollutants, and respiratory diseases are associated with both short- and long-term exposures. We hypothesized that improved air quality in North Carolina was associated with reduced rates of death from respiratory diseases in local populations. MATERIALS AND METHODS: We analyzed the trends of emphysema, asthma, and pneumonia mortality and changes of the levels of ozone, sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and particulate matters (PM2.5 and PM10) using monthly data measurements from air-monitoring stations in North Carolina in 1993-2010. The log-linear model was used to evaluate associations between air-pollutant levels and age-adjusted death rates (per 100,000 of population) calculated for 5-year age-groups and for standard 2000 North Carolina population. The studied associations were adjusted by age group-specific smoking prevalence and seasonal fluctuations of disease-specific respiratory deaths. RESULTS: Decline in emphysema deaths was associated with decreasing levels of SO2 and CO in the air, decline in asthma deaths-with lower SO2, CO, and PM10 levels, and decline in pneumonia deaths-with lower levels of SO2. Sensitivity analyses were performed to study potential effects of the change from International Classification of Diseases (ICD)-9 to ICD-10 codes, the effects of air pollutants on mortality during summer and winter, the impact of approach when only the underlying causes of deaths were used, and when mortality and air-quality data were analyzed on the county level. In each case, the results of sensitivity analyses demonstrated stability. The importance of analysis of pneumonia as an underlying cause of death was also highlighted. CONCLUSION: Significant associations were observed between decreasing death rates of emphysema, asthma, and pneumonia and decreases in levels of ambient air pollutants in North Carolina.