Browsing by Subject "Insulin"
Results Per Page
Sort Options
Item Open Access Acute administration of unacylated ghrelin has no effect on Basal or stimulated insulin secretion in healthy humans.(Diabetes, 2014-07) Tong, Jenny; Davis, Harold W; Summer, Suzanne; Benoit, Stephen C; Haque, Ahrar; Bidlingmaier, Martin; Tschöp, Matthias H; D'Alessio, DavidUnacylated ghrelin (UAG) is the predominant ghrelin isoform in the circulation. Despite its inability to activate the classical ghrelin receptor, preclinical studies suggest that UAG may promote β-cell function. We hypothesized that UAG would oppose the effects of acylated ghrelin (AG) on insulin secretion and glucose tolerance. AG (1 µg/kg/h), UAG (4 µg/kg/h), combined AG+UAG, or saline were infused to 17 healthy subjects (9 men and 8 women) on four occasions in randomized order. Ghrelin was infused for 30 min to achieve steady-state levels and continued through a 3-h intravenous glucose tolerance test. The acute insulin response to glucose (AIRg), insulin sensitivity index (SI), disposition index (DI), and intravenous glucose tolerance (kg) were compared for each subject during the four infusions. AG infusion raised fasting glucose levels but had no effect on fasting plasma insulin. Compared with the saline control, AG and AG+UAG both decreased AIRg, but UAG alone had no effect. SI did not differ among the treatments. AG, but not UAG, reduced DI and kg and increased plasma growth hormone. UAG did not alter growth hormone, cortisol, glucagon, or free fatty acid levels. UAG selectively decreased glucose and fructose consumption compared with the other treatments. In contrast to previous reports, acute administration of UAG does not have independent effects on glucose tolerance or β-cell function and neither augments nor antagonizes the effects of AG.Item Open Access Acute and Intergenerational Nutrient Responses in Caenorhabditis elegans(2017) Hibshman, Jonathan DavidNearly all animals live in environments with fluctuations in nutrient availability. The ability to sense and respond to these changes is essential for survival. Nutrition impacts physiology immediately, but can also have long-lasting effects across generations. The nematode Caenorhabditis elegans is particularly well-adapted to thrive in conditions of variable food availability. Here we find that starvation responses in C. elegans are largely independent of the larval stage at which worms experience starvation. Starvation in worms results in shrinkage, delayed growth upon recovery, and ultimately death. In order to adapt to starvation, metabolism is dramatically altered. At a gross level, this can be seen in a reduction of mitochondrial genomes and a more fragmented network of mitochondria.
Insulin-like signaling is a key cell signaling pathway controlling nutrient responses. We interrogate the role of insulin-like signaling in regulation of the acute starvation response. We show that daf-16/FoxO restructures carbohydrate metabolism by driving carbon flux through the glyoxylate shunt and gluconeogenesis and into synthesis of trehalose, a disaccharide of glucose. Trehalose is a well-known stress protectant, capable of preserving membrane organization and protein structure during abiotic stress. Metabolomic, genetic, and pharmacological analyses confirm increased trehalose synthesis and further show that trehalose not only supports survival as a stress protectant, but also serves as a glycolytic input. Further, we provide evidence that metabolic cycling between trehalose and glucose is necessary for this dual function of trehalose. This work demonstrates that daf-16/FoxO promotes starvation resistance by shifting carbon metabolism to drive trehalose synthesis, which in turn supports survival by providing an energy source and acting as a stress protectant.
In addition to acute changes in response to the nutrient environment, effects can persist intergenerationally. Maternal effects of environmental conditions produce intergenerational phenotypic plasticity. Adaptive value of these effects depends on appropriate anticipation of environmental conditions in the next generation, and mismatch between conditions may contribute to disease. However, regulation of intergenerational plasticity is poorly understood. Dietary restriction (DR) delays aging but maternal effects have not been investigated. We demonstrate maternal effects of DR in the roundworm C. elegans. Worms cultured in DR produce fewer but larger progeny. Nutrient availability is assessed in late larvae and young adults, rather than affecting a set point in young larvae, and maternal age independently affects progeny size. Reduced signaling through the insulin-like receptor daf-2/InsR in the maternal soma causes constitutively large progeny, and its effector daf-16/FoxO is required for this effect. nhr-49/Hnf4, pha-4/FoxA, and skn-1/Nrf also regulate progeny-size plasticity. Genetic analysis suggests that insulin-like signaling controls progeny size in part through regulation of nhr-49/Hnf4, and that pha-4/FoxA and skn-1/Nrf function in parallel to insulin-like signaling and nhr-49/Hnf4. Furthermore, progeny of DR worms are buffered from adverse consequences of early-larval starvation, growing faster and producing more off- spring than progeny of worms fed ad libitum. These results suggest a fitness advantage when mothers and their progeny experience nutrient stress, compared to an environmental mismatch where only progeny are stressed. This work reveals maternal provisioning as an organismal response to DR, demonstrates potentially adaptive intergenerational phenotypic plasticity, and identifies conserved pathways mediating these effects.
Item Restricted beta-arrestin-1 competitively inhibits insulin-induced ubiquitination and degradation of insulin receptor substrate 1.(Mol Cell Biol, 2004-10) Usui, Isao; Imamura, Takeshi; Huang, Jie; Satoh, Hiroaki; Shenoy, Sudha K; Lefkowitz, Robert J; Hupfeld, Christopher J; Olefsky, Jerrold Mbeta-arrestin-1 is an adaptor protein that mediates agonist-dependent internalization and desensitization of G-protein-coupled receptors (GPCRs) and also participates in the process of heterologous desensitization between receptor tyrosine kinases and GPCR signaling. In the present study, we determined whether beta-arrestin-1 is involved in insulin-induced insulin receptor substrate 1 (IRS-1) degradation. Overexpression of wild-type (WT) beta-arrestin-1 attenuated insulin-induced degradation of IRS-1, leading to increased insulin signaling downstream of IRS-1. When endogenous beta-arrestin-1 was knocked down by transfection of beta-arrestin-1 small interfering RNA, insulin-induced IRS-1 degradation was enhanced. Insulin stimulated the association of IRS-1 and Mdm2, an E3 ubiquitin ligase, and this association was inhibited to overexpression of WT beta-arrestin-1, which led by decreased ubiquitin content of IRS-1, suggesting that both beta-arrestin-1 and IRS-1 competitively bind to Mdm2. In summary, we have found the following: (i) beta-arrestin-1 can alter insulin signaling by inhibiting insulin-induced proteasomal degradation of IRS-1; (ii) beta-arrestin-1 decreases the rate of ubiquitination of IRS-1 by competitively binding to endogenous Mdm2, an E3 ligase that can ubiquitinate IRS-1; (iii) dephosphorylation of S412 on beta-arrestin and the amino terminus of beta-arrestin-1 are required for this effect of beta-arrestin on IRS-1 degradation; and (iv) inhibition of beta-arrestin-1 leads to enhanced IRS-1 degradation and accentuated cellular insulin resistance.Item Open Access Big or fast: two strategies in the developmental control of body size.(BMC Biol, 2015-08-04) Nijhout, H FrederikAdult body size is controlled by the mechanisms that stop growth when a species-characteristic size has been reached. The mechanisms by which size is sensed and by which this information is transduced to the growth regulating system are beginning to be understood in a few species of insects. Two rather different strategies for control have been discovered; one favors large body size and the other favors rapid development.Item Open Access Controlled and cardiac-restricted overexpression of the arginine vasopressin V1A receptor causes reversible left ventricular dysfunction through Gαq-mediated cell signaling.(Circulation, 2011-08) Li, Xue; Chan, Tung O; Myers, Valerie; Chowdhury, Ibrul; Zhang, Xue-Qian; Song, Jianliang; Zhang, Jin; Andrel, Jocelyn; Funakoshi, Hajime; Robbins, Jeffrey; Koch, Walter J; Hyslop, Terry; Cheung, Joseph Y; Feldman, Arthur MBackground
[Arg8]-vasopressin (AVP) activates 3 G-protein-coupled receptors: V1A, V2, and V1B. The AVP-V1A receptor is the primary AVP receptor in the heart; however, its role in cardiac homeostasis is controversial. To better understand AVP-mediated signaling in the heart, we created a transgenic mouse with controlled overexpression of the V1A receptor.Methods and results
The V1A receptor transgene was placed under the control of the tetracycline-regulated, cardiac-specific α-myosin heavy chain promoter (V1A-TG). V1A-TG mice had a normal cardiac function phenotype at 10 weeks of age; however, by 24 weeks of age, tetracycline-transactivating factor/V1A-TG mouse hearts had reduced cardiac function, cardiac hypertrophy, and dilatation of the ventricular cavity. Contractile dysfunction was also observed in isolated adult cardiac myocytes. When V1A receptor transgene was induced to be expressed in adult mice (V1A-TG(Ind)), left ventricular dysfunction and dilatation were also seen, albeit at a later time point. Because the V1A receptor mediates cell signaling through Gα(q) protein, we blocked Gα(q) signaling by crossing tetracycline-transactivating factor/V1A mice with transgenic mice that expressed a small inhibitory peptide against Gα(q). Gα(q) blockade abrogated the development of the heart failure phenotype in tetracycline-transactivating factor/V1A-TG mice. The heart failure phenotype could be reversed by administration of doxycycline.Conclusions
Our results demonstrate a role for V1A-mediated signaling in the development of heart failure and support a role for V1A blockade in the treatment of patients with elevated levels of vasopressin.Item Open Access Critical appraisal of four IL-6 immunoassays.(PLoS One, 2012) Thompson, Dana K; Huffman, Kim M; Kraus, William E; Kraus, Virginia ByersBACKGROUND: Interleukin-6 (IL-6) contributes to numerous inflammatory, metabolic, and physiologic pathways of disease. We evaluated four IL-6 immunoassays in order to identify a reliable assay for studies of metabolic and physical function. Serial plasma samples from intravenous glucose tolerance tests (IVGTTs), with expected rises in IL-6 concentrations, were used to test the face validity of the various assays. METHODS AND FINDINGS: IVGTTs, administered to 14 subjects, were performed with a single infusion of glucose (0.3 g/kg body mass) at time zero, a single infusion of insulin (0.025 U/kg body mass) at 20 minutes, and frequent blood collection from time zero to 180 minutes for subsequent Il-6 measurement. The performance metrics of four IL-6 detection methods were compared: Meso Scale Discovery immunoassay (MSD), an Invitrogen Luminex bead-based multiplex panel (LX), an Invitrogen Ultrasensitive Luminex bead-based singleplex assay (ULX), and R&D High Sensitivity ELISA (R&D). IL-6 concentrations measured with MSD, R&D and ULX correlated with each other (Pearson Correlation Coefficients r = 0.47-0.94, p<0.0001) but only ULX correlated (r = 0.31, p = 0.0027) with Invitrogen Luminex. MSD, R&D, and ULX, but not LX, detected increases in IL-6 in response to glucose. All plasma samples were measurable by MSD, while 35%, 1%, and 4.3% of samples were out of range when measured by LX, ULX, and R&D, respectively. Based on representative data from the MSD assay, baseline plasma IL-6 (0.90 ± 0.48 pg/mL) increased significantly as expected by 90 minutes (1.29 ± 0.59 pg/mL, p = 0.049), and continued rising through 3 hours (4.25 ± 3.67 pg/mL, p = 0.0048). CONCLUSION: This study established the face validity of IL-6 measurement by MSD, R&D, and ULX but not LX, and the superiority of MSD with respect to dynamic range. Plasma IL-6 concentrations increase in response to glucose and insulin, consistent with both an early glucose-dependent response (detectable at 1-2 hours) and a late insulin-dependent response (detectable after 2 hours).Item Open Access dbl-1/TGF-β and daf-12/NHR Signaling Mediate Cell-Nonautonomous Effects of daf-16/FOXO on Starvation-Induced Developmental Arrest.(PLoS Genet, 2015-12) Kaplan, RE; Chen, Y; Moore, BT; Jordan, JM; Maxwell, CS; Schindler, AJ; Baugh, LRNutrient availability has profound influence on development. In the nematode C. elegans, nutrient availability governs post-embryonic development. L1-stage larvae remain in a state of developmental arrest after hatching until they feed. This "L1 arrest" (or "L1 diapause") is associated with increased stress resistance, supporting starvation survival. Loss of the transcription factor daf-16/FOXO, an effector of insulin/IGF signaling, results in arrest-defective and starvation-sensitive phenotypes. We show that daf-16/FOXO regulates L1 arrest cell-nonautonomously, suggesting that insulin/IGF signaling regulates at least one additional signaling pathway. We used mRNA-seq to identify candidate signaling molecules affected by daf-16/FOXO during L1 arrest. dbl-1/TGF-β, a ligand for the Sma/Mab pathway, daf-12/NHR and daf-36/oxygenase, an upstream component of the daf-12 steroid hormone signaling pathway, were up-regulated during L1 arrest in a daf-16/FOXO mutant. Using genetic epistasis analysis, we show that dbl-1/TGF-β and daf-12/NHR steroid hormone signaling pathways are required for the daf-16/FOXO arrest-defective phenotype, suggesting that daf-16/FOXO represses dbl-1/TGF-β, daf-12/NHR and daf-36/oxygenase. The dbl-1/TGF-β and daf-12/NHR pathways have not previously been shown to affect L1 development, but we found that disruption of these pathways delayed L1 development in fed larvae, consistent with these pathways promoting development in starved daf-16/FOXO mutants. Though the dbl-1/TGF-β and daf-12/NHR pathways are epistatic to daf-16/FOXO for the arrest-defective phenotype, disruption of these pathways does not suppress starvation sensitivity of daf-16/FOXO mutants. This observation uncouples starvation survival from developmental arrest, indicating that DAF-16/FOXO targets distinct effectors for each phenotype and revealing that inappropriate development during starvation does not cause the early demise of daf-16/FOXO mutants. Overall, this study shows that daf-16/FOXO promotes developmental arrest cell-nonautonomously by repressing pathways that promote larval development.Item Open Access Elevated C-peptide and insulin predict increased risk of colorectal adenomas in normal mucosa.(BMC Cancer, 2012-09-05) Vidal, Adriana C; Lund, Pauline Kay; Hoyo, Cathrine; Galanko, Joseph; Burcal, Lauren; Holston, Rachel; Massa, Berri; Omofoye, Oluwaseun; Sandler, Robert S; Keku, Temitope OBACKGROUND: Lower concentrations of the insulin-like growth factor binding protein-1 (IGFBP-1) and elevated concentrations of insulin or C-peptide have been associated with an increase in colorectal cancer risk (CRC). However few studies have evaluated IGFBP-1 and C-peptide in relation to adenomatous polyps, the only known precursor for CRC. METHODS: Between November 2001 and December 2002, we examined associations between circulating concentrations of insulin, C-peptide, IGFBP-1 and apoptosis among 190 individuals with one or more adenomatous polyps and 488 with no adenomatous polyps using logistic regression models. RESULTS: Individuals with the highest concentrations of C-peptide were more likely to have adenomas (OR = 2.2, 95% CI 1.4-4.0) than those with the lowest concentrations; associations that appeared to be stronger in men (OR = 4.4, 95% CI 1.7-10.9) than women. Individuals with high insulin concentrations also had a higher risk of adenomas (OR = 3.5, 95% CI 1.7-7.4), whereas higher levels of IGFBP-1 were associated with a reduced risk of adenomas in men only (OR = 0.3, 95% CI 0.1-0.7). Overweight and obese individuals with higher C-peptide levels (>1(st) Q) were at increased risk for lower apoptosis index (OR = 2.5, 95% CI 0.9-7.1), an association that remained strong in overweight and obese men (OR = 6.3, 95% CI 1.0-36.7). Higher levels of IGFBP-1 in overweight and obese individuals were associated with a reduced risk of low apoptosis (OR = 0.3, 95% CI 0.1-1.0). CONCLUSIONS: Associations between these peptides and the apoptosis index in overweight and obese individuals, suggest that the mechanism by which C-peptide could induce adenomas may include its anti-apoptotic properties. This study suggests that hyperinsulinemia and IGF hormones predict adenoma risk, and that outcomes associated with colorectal carcinogenesis maybe modified by gender.Item Open Access Factors associated with persistent poorly controlled diabetes mellitus: clues to improving management in patients with resistant poor control.(Chronic illness, 2014-12) Crowley, Matthew J; Holleman, Rob; Klamerus, Mandi L; Bosworth, Hayden B; Edelman, David; Heisler, MicheleObjectives
Patients with persistent poorly controlled diabetes mellitus (PPDM), defined as an uninterrupted hemoglobin A1c >8.0% for ≥1 year despite standard care, are at high risk for complications. Additional research to define patient factors associated with PPDM could suggest barriers to improvement in this group and inform the development of targeted strategies to address these patients' resistant diabetes.Methods
We analyzed patients with type 2 diabetes from a multi-site randomized trial. We characterized patients with PPDM relative to other patients using detailed survey data and multivariable modeling.Results
Of 963 patients, 118 (12%) had PPDM, 265 (28%) were intermittently poorly controlled, and 580 (60%) were well-controlled. Patients with PPDM had younger age, earlier diabetes diagnosis, insulin use, higher antihypertensive burden, higher low-density lipoprotein cholesterol, and lower statin use relative to well-controlled patients. Among patients with objective adherence data (Veterans Affairs patients), a larger oral diabetes medication refill gap was associated with PPDM.Discussion
Strategies are needed to target-specific barriers to improvement among patients whose diabetes is resistant to standard diabetes care. Our data suggest that strategies for targeting PPDM should accommodate younger patients' lifestyles, include medication management for insulin titration and comorbid disease conditions, and address barriers to self-management adherence.Item Open Access Ghrelin suppresses glucose-stimulated insulin secretion and deteriorates glucose tolerance in healthy humans.(Diabetes, 2010-09) Tong, Jenny; Prigeon, Ronald L; Davis, Harold W; Bidlingmaier, Martin; Kahn, Steven E; Cummings, David E; Tschöp, Matthias H; D'Alessio, DavidOBJECTIVE: The orexigenic gut hormone ghrelin and its receptor are present in pancreatic islets. Although ghrelin reduces insulin secretion in rodents, its effect on insulin secretion in humans has not been established. The goal of this study was to test the hypothesis that circulating ghrelin suppresses glucose-stimulated insulin secretion in healthy subjects. RESEARCH DESIGN AND METHODS: Ghrelin (0.3, 0.9 and 1.5 nmol/kg/h) or saline was infused for more than 65 min in 12 healthy patients (8 male/4 female) on 4 separate occasions in a counterbalanced fashion. An intravenous glucose tolerance test was performed during steady state plasma ghrelin levels. The acute insulin response to intravenous glucose (AIRg) was calculated from plasma insulin concentrations between 2 and 10 min after the glucose bolus. Intravenous glucose tolerance was measured as the glucose disappearance constant (Kg) from 10 to 30 min. RESULTS: The three ghrelin infusions raised plasma total ghrelin concentrations to 4-, 15-, and 23-fold above the fasting level, respectively. Ghrelin infusion did not alter fasting plasma insulin or glucose, but compared with saline, the 0.3, 0.9, and 1.5 nmol/kg/h doses decreased AIRg (2,152 +/- 448 vs. 1,478 +/- 2,889, 1,419 +/- 275, and 1,120 +/- 174 pmol/l) and Kg (0.3 and 1.5 nmol/kg/h doses only) significantly (P < 0.05 for all). Ghrelin infusion raised plasma growth hormone and serum cortisol concentrations significantly (P < 0.001 for both), but had no effect on glucagon, epinephrine, or norepinephrine levels (P = 0.44, 0.74, and 0.48, respectively). CONCLUSIONS: This is a robust proof-of-concept study showing that exogenous ghrelin reduces glucose-stimulated insulin secretion and glucose disappearance in healthy humans. Our findings raise the possibility that endogenous ghrelin has a role in physiologic insulin secretion, and that ghrelin antagonists could improve beta-cell function.Item Open Access Glucose control in hospitalized patients.(American family physician, 2010-05) Sawin, Gregory; Shaughnessy, Allen FEvidence indicates that hospitalized patients with hyperglycemia do not benefit from tight blood glucose control. Maintaining a blood glucose level of less than 180 mg per dL (9.99 mmol per L) will minimize symptoms of hyperglycemia and hypoglycemia without adversely affecting patient-oriented health outcomes. In the absence of modifying factors, physicians should continue patients' at-home diabetes mellitus medications and randomly check glucose levels once daily. Sulfonylureas should be withheld to avoid hypoglycemia in patients with limited caloric intake. Patients with cardiovascular conditions may benefit from temporarily stopping treatment with thiazolidinediones to avoid precipitating heart failure. Metformin should be temporarily withheld in patients who have worsening renal function or who will undergo an imaging study that uses contrast. When patients need to be treated with insulin in the short term, using a long-acting basal insulin combined with a short-acting insulin before meals (with the goal of keeping blood glucose less than 180 mg per dL) better approximates normal physiology and uses fewer nursing resources than sliding-scale insulin approaches. Most studies have found that infusion with glucose, insulin, and potassium does not improve mortality in patients with acute myocardial infarction. Patients admitted with acute myocardial infarction should have moderate control of blood glucose using home regimens or basal insulin with correctional doses.Item Open Access Glycerate from Fat-modulating Fructose Metabolism as a Mediator of Diabetes(2022) Wong, Chi WutThe prevalence of diabetes is on the rise, thus imposing a huge burden on our society. In addition to genetic and environmental risk factors, obesity strongly predicts the development of diabetes. Owing to the strong correlation between saturated fat and fructose intake and the incidence of metabolic diseases and obesity, dietary intervention is one of the common management strategies to control obesity and diabetes. Although there are still contentious debates on whether a low-fat or low-carbohydrate diet is beneficial to metabolic health, less is known about the interaction between lipid and carbohydrate metabolism. One of the overlooked interactions is how fat intake modulates fructose metabolism.
The effects of high-fat intake were first studied in mouse models. Coupled with fructose stable isotopic tracing, we profiled the fructose metabolism in various tissues among mice fed with either a high-fat diet or a control diet. We also surveyed the fructose-derived metabolites in the circulation to establish the systematic perturbations of fructose metabolism by the high-fat diet. We unveiled that a high-fat diet potentiates intestinal fructose metabolism and the production of glycerate. The fructose-derived glycerate then enters the circulation and reaches the pancreas.
We performed daily glycerate administration to model the high circulating glycerate level among mice. Through metabolic profiling, we found that high circulating glycerate can cause glucose intolerance but not induce insulin resistance. The observed glucose intolerance phenotype is likely related to the reduction in circulating insulin levels and that reduced insulin secretion is independent of the insulin sensitivity among the mice treated with glycerate. In the investigation of the pancreatic islets, we found glycerate treatment promotes pancreatic beta-cell damage and apoptosis.
In conclusion, we demonstrated the interaction between fat and fructose intake, in which high fat intake enhances the fructose metabolism in the small intestine. The up-regulated fructose metabolism in the small intestine enhances the production of glycerate. High circulating glycerate is a risk factor for diabetes development via depletion of insulin content in pancreatic islets. Therefore, this study discovers a novel mechanism for fructose-induced diabetes via the action of glycerate. It also supports the idea of reducing fat and fructose intake simultaneously, rather than either macronutrient alone, to achieve maximal metabolic health benefits.
Item Open Access Human longevity and variation in GH/IGF-1/insulin signaling, DNA damage signaling and repair and pro/antioxidant pathway genes: cross sectional and longitudinal studies.(Exp Gerontol, 2012-05) Soerensen, Mette; Dato, Serena; Tan, Qihua; Thinggaard, Mikael; Kleindorp, Rabea; Beekman, Marian; Jacobsen, Rune; Suchiman, H Eka D; de Craen, Anton JM; Westendorp, Rudi GJ; Schreiber, Stefan; Stevnsner, Tinna; Bohr, Vilhelm A; Slagboom, P Eline; Nebel, Almut; Vaupel, James W; Christensen, Kaare; McGue, Matt; Christiansen, LeneHere we explore association with human longevity of common genetic variation in three major candidate pathways: GH/IGF-1/insulin signaling, DNA damage signaling and repair and pro/antioxidants by investigating 1273 tagging SNPs in 148 genes composing these pathways. In a case-control study of 1089 oldest-old (age 92-93) and 736 middle-aged Danes we found 1 pro/antioxidant SNP (rs1002149 (GSR)), 5 GH/IGF-1/INS SNPs (rs1207362 (KL), rs2267723 (GHRHR), rs3842755 (INS), rs572169 (GHSR), rs9456497 (IGF2R)) and 5 DNA repair SNPs (rs11571461 (RAD52), rs13251813 (WRN), rs1805329 (RAD23B), rs2953983 (POLB), rs3211994 (NTLH1)) to be associated with longevity after correction for multiple testing. In a longitudinal study with 11 years of follow-up on survival in the oldest-old Danes we found 2 pro/antioxidant SNPs (rs10047589 (TNXRD1), rs207444 (XDH)), 1 GH/IGF-1/INS SNP (rs26802 (GHRL)) and 3 DNA repair SNPs (rs13320360 (MLH1), rs2509049 (H2AFX) and rs705649 (XRCC5)) to be associated with mortality in late life after correction for multiple testing. When examining the 11 SNPs from the case-control study in the longitudinal data, rs3842755 (INS), rs13251813 (WRN) and rs3211994 (NTHL1) demonstrated the same directions of effect (p<0.05), while rs9456497 (IGF2R) and rs1157146 (RAD52) showed non-significant tendencies, indicative of effects also in late life survival. In addition, rs207444 (XDH) presented the same direction of effect when inspecting the 6 SNPs from the longitudinal study in the case-control data, hence, suggesting an effect also in survival from middle age to old age. No formal replications were observed when investigating the 11 SNPs from the case-control study in 1613 oldest-old (age 95-110) and 1104 middle-aged Germans, although rs11571461 (RAD52) did show a supportive non-significant tendency (OR=1.162, 95% CI=0.927-1.457). The same was true for rs10047589 (TNXRD1) (HR=0.758, 95%CI=0.543-1.058) when examining the 6 SNPs from the longitudinal study in a Dutch longitudinal cohort of oldest-old (age 85+, N=563). In conclusion, the present candidate gene based association study, the largest to date applying a pathway approach, not only points to potential new longevity loci, but also underlines the difficulties of replicating association findings in independent study populations and thus the difficulties in identifying universal longevity polymorphisms.Item Open Access Identification of late larval stage developmental checkpoints in Caenorhabditis elegans regulated by insulin/IGF and steroid hormone signaling pathways.(PLoS Genet, 2014-06) Schindler, Adam J; Baugh, L Ryan; Sherwood, David ROrganisms in the wild develop with varying food availability. During periods of nutritional scarcity, development may slow or arrest until conditions improve. The ability to modulate developmental programs in response to poor nutritional conditions requires a means of sensing the changing nutritional environment and limiting tissue growth. The mechanisms by which organisms accomplish this adaptation are not well understood. We sought to study this question by examining the effects of nutrient deprivation on Caenorhabditis elegans development during the late larval stages, L3 and L4, a period of extensive tissue growth and morphogenesis. By removing animals from food at different times, we show here that specific checkpoints exist in the early L3 and early L4 stages that systemically arrest the development of diverse tissues and cellular processes. These checkpoints occur once in each larval stage after molting and prior to initiation of the subsequent molting cycle. DAF-2, the insulin/insulin-like growth factor receptor, regulates passage through the L3 and L4 checkpoints in response to nutrition. The FOXO transcription factor DAF-16, a major target of insulin-like signaling, functions cell-nonautonomously in the hypodermis (skin) to arrest developmental upon nutrient removal. The effects of DAF-16 on progression through the L3 and L4 stages are mediated by DAF-9, a cytochrome P450 ortholog involved in the production of C. elegans steroid hormones. Our results identify a novel mode of C. elegans growth in which development progresses from one checkpoint to the next. At each checkpoint, nutritional conditions determine whether animals remain arrested or continue development to the next checkpoint.Item Open Access Nutritional Control of L1 Arrest and Recovery in Caenorhabditis elegans by Insulin-like Peptides and Signaling(2014) Chen, YutaoAnimals must coordinate development with fluctuating nutrient availability. Nutrient availability governs post-embryonic development in Caenorhabditis elegans: larvae that hatch in the absence of food do not initiate post-embryonic development but enter "L1 arrest" (or "L1 diapause") and can survive starvation for weeks, while rapidly resume normal development once get fed. Insulin-like signaling (IIS) has been shown to be a key regulator of L1 arrest and recovery. However, the C. elegans genome encodes 40 insulin-like peptides (ILPs), and it is unknown which peptides participate in nutritional control of L1 arrest and recovery. Work in other contexts has identified putative receptor agonists and antagonists, but the extent of specificity versus redundancy is unclear beyond this distinction.
We measured mRNA expression dynamics with high temporal resolution for all 40 insulin-like genes during entry into and recovery from L1 arrest. Nutrient availability influences expression of the majority of insulin-like genes, with variable dynamics suggesting complex regulation. We identified 13 candidate agonists and 8 candidate antagonists based on expression in response to nutrient availability. We selected ten candidate agonists (daf-28, ins-3, ins-4, ins-5, ins-6, ins-7, ins-9, ins-26, ins-33 and ins-35) for further characterization in L1 stage larvae. We used destabilized reporter genes to determine spatial expression patterns. Expression of candidate agonists was largely overlapping in L1 stage larvae, suggesting a role of the intestine, chemosensory neurons ASI and ASJ, and the interneuron PVT in systemic control of L1 development. Transcriptional regulation of candidate agonists was most significant in the intestine, as if nutrient uptake was a more important influence on transcription than sensory perception. Scanning in the 5' upstream promoter region of these 40 ILPs, We found that transcription factor PQM-1 and GATA putative binding sites are depleted in the promoter region of antagonists. A novel motif was also found to be over-represented in ILPs.
Phenotypic analysis of single and compound deletion mutants did not reveal effects on L1 recovery/developmental dynamics, though simultaneous disruption of ins-4 and daf-28 extended survival of L1 arrest without enhancing thermal tolerance, while overexpression of ins-4, ins-6 or daf-28 shortened L1 survival. Simultaneous disruption of several ILPs showed a temperature independent, transient dauer phenotype. These results revealed the relative redundancy and specificity among agonistic ILPs.
TGF- β and steroid hormone (SH) signaling have been reported to control the dauer formation along with IIS. Our preliminary results suggest they may also mediate the IIS control of L1 arrest and recovery, as the expression of several key components of TGF-β and SH signaling pathway genes are negatively regulated by DAF-16, and loss-of-function of these genes partially represses daf-16 null phenotype in L1 arrest, and causes a retardation in L1 development.
In summary, my dissertation study focused on the IIS, characterized the dynamics and sites of ILPs expression in response to nutrient availability, revealed the function of specific agonistic ILPs in L1 arrest, and suggested potential cross-regulation among IIS, TGF-β signaling and SH signaling in controlling L1 arrest and recovery. These findings provide insights into how post-embryonic development is governed by insulin-like signaling and nutrient availability.
Item Open Access Pharmacological targeting of the mitochondrial phosphatase PTPMT1.(2009) Doughty-Shenton, DahliaThe dual specificity protein tyrosine phosphatases comprise the largest and most diverse group of protein tyrosine phosphatases and play integral roles in the regulation of cell signaling events. The dual specificity protein tyrosine phosphatases impact multiple cellular processes including mitogenesis, differentiation, adhesion, migration, insulin secretion and programmed cell death. Thus, the dysregulation of these enzymes has been implicated in a myriad of human disease states. While the large volume of genetic data that has become available following genome sequencing efforts over the last decade has led to the rapid identification of many new dual specificity protein tyrosine phosphatases, the elucidation of the cellular function and substrates of these enzymes has been much slower. Hence, there is a need for new tools to study the dual specificity protein tyrosine phosphatases and the identification of inhibitors of these enzymes is regarded as an attractive prospect, potentially affording not only new means of studying these enzymes, but also possible therapeutics for the treatment of diseases caused by their dysregulation. However, the identification of potent, selective inhibitors of the dual specificity protein tyrosine phosphatases has proven somewhat difficult. PTPMT1, Protein Tyrosine Phosphatase Localized to the Mitochondrion 1 is a recently discovered, mitochondrion-localized, dual specificity phosphatase which has been implicated in the regulation of insulin secretion. However, the details of the mechanism by which PTPMT1 impacts insulin secretion, as well as its substrate in the pancreatic β-cell, have yet to be uncovered. Thus, the identification of a potent, selective inhibitor of the enzyme would aid in further study of PTPMT1. This work describes the identification of such an inhibitor of PTPMT1 following an in vitro screen of small molecule, chemical compounds using an artificial substrate. Following the screen, the lead compound emerged as a potent and potentially selective inhibitor of PTPMT1 both in vitro and in cells. Studies using this compound have shown that the compound induces increased secretion of insulin in a dose-dependent manner and thus support the notion that PTPMT1 may serve as a potential target for the treatment of Type II diabetes.Item Open Access Sensitive and precise quantification of insulin-like mRNA expression in Caenorhabditis elegans.(PLoS One, 2011-03-22) Baugh, L Ryan; Kurhanewicz, Nicole; Sternberg, Paul WInsulin-like signaling regulates developmental arrest, stress resistance and lifespan in the nematode Caenorhabditis elegans. However, the genome encodes 40 insulin-like peptides, and the regulation and function of individual peptides is largely uncharacterized. We used the nCounter platform to measure mRNA expression of all 40 insulin-like peptides as well as the insulin-like receptor daf-2, its transcriptional effector daf-16, and the daf-16 target gene sod-3. We validated the platform using 53 RNA samples previously characterized by high density oligonucleotide microarray analysis. For this set of genes and the standard nCounter protocol, sensitivity and precision were comparable between the two platforms. We optimized conditions of the nCounter assay by varying the mass of total RNA used for hybridization, thereby increasing sensitivity up to 50-fold and reducing the median coefficient of variation as much as 4-fold. We used deletion mutants to demonstrate specificity of the assay, and we used optimized conditions to assay insulin-like gene expression throughout the C. elegans life cycle. We detected expression for nearly all insulin-like genes and find that they are expressed in a variety of distinct patterns suggesting complexity of regulation and specificity of function. We identified insulin-like genes that are specifically expressed during developmental arrest, larval development, adulthood and embryogenesis. These results demonstrate that the nCounter platform provides a powerful approach to analyzing insulin-like gene expression dynamics, and they suggest hypotheses about the function of individual insulin-like genes.Item Open Access Shared Metabolic Pathways in Fuel-Stimulated Insulin Secretion(2009) Odegaard, Matthew LesterInsulin secretion is a fundamental process of pancreatic beta-cells required for the maintenance of glucose homeostasis. Fuel-stimulated insulin secretion occurs in proportion to the rate of metabolism of fuel substrates, yet the signals generated by metabolism of these secretagogues are incompletely understood. The increased burden placed on the beta-cell in conditions of obesity and insulin resistance often leads to dysregulation of stimulous-secretion coupling. Therefore, better understanding of the metabolic events required for insulin release is likely to be helpful in development of more effective treatments for diabetes.
Previous work in our lab revealed a critical role for the pyruvate-isocitrate cycling pathway in glucose-stimulated insulin secretion. It has been our hypothesis that this series of reactions plays a unique role in the beta-cell, and may be responsible for the generation of second-messenger signals critical for insulin secretion in response to increased fuel metabolism. One of the intermediates in the pyruvate/isocitrate cycle is cytosolic 2-oxoglutarate (2OG). In an effort to better understand the components of the pyruvate/isocitrate cycle and the signals that it generates, we initially focused our studies on the transporter protein responsible for the return of 2OG to the mitochondria, the 2-oxoglutarate carrier (OGC).
OGC was overexpressed in rat insulinoma 832/13 beta-cells and suppressed in both 832/13 cells and islets, and effects on metabolism and insulin secretion were measured. While overexpression of the OGC failed to alter insulin secretion, its siRNA-mediated suppression resulted in decreased insulin secretion in response to glucose, glutamine + BCH, and dimethyl-2-oxoglutarate. Suppression of OGC did not affect core pathways of fuel metabolism such as glucose usage, glucose oxidation or ATP production during glucose-stimulated insulin secretion (GSIS) or glutamine oxidation or ATP production during amino acid-stimulated insulin secretion (AASIS). Similar to previous findings, glucose-induced NADPH production was determined to be decreased in response to OGC suppression, whereas NADPH production during AASIS in untreated cells was already much lower than for GSIS, and suppression of OGC failed to decrease NADPH further.
As an additional approach to studying the role of 2OG metabolism in insulin secretion, we also investigated the mitochondrial enzyme glutamate dehydrogenase (Glud1). Overexpression of wild-type Glud1 failed to alter insulin secretion in 832/13 cells or in islets; however, suppression of Glud1 decreased both GSIS and AASIS, but did not affect dimethyl-2OG-stimulated insulin secretion. The reduction in AASIS was most likely the result of reduced glutamine oxidation. In contrast, during GSIS, NADPH production was decrease by Glud1 suppression, similar to our observation with the OGC.
In summary, these data expand our understanding of the metabolic pathways necessary for insulin secretion, and support the idea of a common metabolic pathway required for fuel-stimulated insulin release, including flux through the OGC, Glud1, and ICDc. However, while these data support the hypothesis that NADPH production is necessary for robust GSIS, it plays a less-prominent role during AASIS, and most likely works in concert with additional coupling-factors and signals.
Item Unknown STAR 3 randomized controlled trial to compare sensor-augmented insulin pump therapy with multiple daily injections in the treatment of type 1 diabetes: research design, methods, and baseline characteristics of enrolled subjects.(Diabetes Technol Ther, 2010-04) Davis, Stephen N; Horton, Edward S; Battelino, Tadej; Rubin, Richard R; Schulman, Kevin A; Tamborlane, William VBACKGROUND: Sensor-augmented pump therapy (SAPT) integrates real-time continuous glucose monitoring (RT-CGM) with continuous subcutaneous insulin infusion (CSII) and offers an alternative to multiple daily injections (MDI). Previous studies provide evidence that SAPT may improve clinical outcomes among people with type 1 diabetes. Sensor-Augmented Pump Therapy for A1c Reduction (STAR) 3 is a multicenter randomized controlled trial comparing the efficacy of SAPT to that of MDI in subjects with type 1 diabetes. METHODS: Subjects were randomized to either continue with MDI or transition to SAPT for 1 year. Subjects in the MDI cohort were allowed to transition to SAPT for 6 months after completion of the study. SAPT subjects who completed the study were also allowed to continue for 6 months. The primary end point was the difference between treatment groups in change in hemoglobin A1c (HbA1c) percentage from baseline to 1 year of treatment. Secondary end points included percentage of subjects with HbA1c < or =7% and without severe hypoglycemia, as well as area under the curve of time spent in normal glycemic ranges. Tertiary end points include percentage of subjects with HbA1c < or =7%, key safety end points, user satisfaction, and responses on standardized assessments. RESULTS: A total of 495 subjects were enrolled, and the baseline characteristics similar between the SAPT and MDI groups. Study completion is anticipated in June 2010. CONCLUSIONS: Results of this randomized controlled trial should help establish whether an integrated RT-CGM and CSII system benefits patients with type 1 diabetes more than MDI.Item Open Access To grow or not to grow: nutritional control of development during Caenorhabditis elegans L1 arrest.(Genetics, 2013-07) Baugh, L RyanIt is widely appreciated that larvae of the nematode Caenorhabditis elegans arrest development by forming dauer larvae in response to multiple unfavorable environmental conditions. C. elegans larvae can also reversibly arrest development earlier, during the first larval stage (L1), in response to starvation. "L1 arrest" (also known as "L1 diapause") occurs without morphological modification but is accompanied by increased stress resistance. Caloric restriction and periodic fasting can extend adult lifespan, and developmental models are critical to understanding how the animal is buffered from fluctuations in nutrient availability, impacting lifespan. L1 arrest provides an opportunity to study nutritional control of development. Given its relevance to aging, diabetes, obesity and cancer, interest in L1 arrest is increasing, and signaling pathways and gene regulatory mechanisms controlling arrest and recovery have been characterized. Insulin-like signaling is a critical regulator, and it is modified by and acts through microRNAs. DAF-18/PTEN, AMP-activated kinase and fatty acid biosynthesis are also involved. The nervous system, epidermis, and intestine contribute systemically to regulation of arrest, but cell-autonomous signaling likely contributes to regulation in the germline. A relatively small number of genes affecting starvation survival during L1 arrest are known, and many of them also affect adult lifespan, reflecting a common genetic basis ripe for exploration. mRNA expression is well characterized during arrest, recovery, and normal L1 development, providing a metazoan model for nutritional control of gene expression. In particular, post-recruitment regulation of RNA polymerase II is under nutritional control, potentially contributing to a rapid and coordinated response to feeding. The phenomenology of L1 arrest will be reviewed, as well as regulation of developmental arrest and starvation survival by various signaling pathways and gene regulatory mechanisms.