Browsing by Subject "Ion Channels"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access A whole-cell and single-channel study of the voltage-dependent outward potassium current in avian hepatocytes.(J Gen Physiol, 1988-02) Marchetti, C; Premont, RT; Brown, AMVoltage-dependent membrane currents were studied in dissociated hepatocytes from chick, using the patch-clamp technique. All cells had voltage-dependent outward K+ currents; in 10% of the cells, a fast, transient, tetrodotoxin-sensitive Na+ current was identified. None of the cells had voltage-dependent inward Ca2+ currents. The K+ current activated at a membrane potential of about -10 mV, had a sigmoidal time course, and did not inactivate in 500 ms. The maximum outward conductance was 6.6 +/- 2.4 nS in 18 cells. The reversal potential, estimated from tail current measurements, shifted by 50 mV per 10-fold increase in the external K+ concentration. The current traces were fitted by n2 kinetics with voltage-dependent time constants. Omitting Ca2+ from the external bath or buffering the internal Ca2+ with EGTA did not alter the outward current, which shows that Ca2+-activated K+ currents were not present. 1-5 mM 4-aminopyridine, 0.5-2 mM BaCl2, and 0.1-1 mM CdCl2 reversibly inhibited the current. The block caused by Ba was voltage dependent. Single-channel currents were recorded in cell-attached and outside-out patches. The mean unitary conductance was 7 pS, and the channels displayed bursting kinetics. Thus, avian hepatocytes have a single type of K+ channel belonging to the delayed rectifier class of K+ channels.Item Open Access Synergy between Piezo1 and Piezo2 channels confers high-strain mechanosensitivity to articular cartilage.(Proc Natl Acad Sci U S A, 2014-11-25) Lee, Whasil; Leddy, Holly A; Chen, Yong; Lee, Suk Hee; Zelenski, Nicole A; McNulty, Amy L; Wu, Jason; Beicker, Kellie N; Coles, Jeffrey; Zauscher, Stefan; Grandl, Jörg; Sachs, Frederick; Guilak, Farshid; Liedtke, Wolfgang BDiarthrodial joints are essential for load bearing and locomotion. Physiologically, articular cartilage sustains millions of cycles of mechanical loading. Chondrocytes, the cells in cartilage, regulate their metabolic activities in response to mechanical loading. Pathological mechanical stress can lead to maladaptive cellular responses and subsequent cartilage degeneration. We sought to deconstruct chondrocyte mechanotransduction by identifying mechanosensitive ion channels functioning at injurious levels of strain. We detected robust expression of the recently identified mechanosensitive channels, PIEZO1 and PIEZO2. Combined directed expression of Piezo1 and -2 sustained potentiated mechanically induced Ca(2+) signals and electrical currents compared with single-Piezo expression. In primary articular chondrocytes, mechanically evoked Ca(2+) transients produced by atomic force microscopy were inhibited by GsMTx4, a PIEZO-blocking peptide, and by Piezo1- or Piezo2-specific siRNA. We complemented the cellular approach with an explant-cartilage injury model. GsMTx4 reduced chondrocyte death after mechanical injury, suggesting a possible therapy for reducing cartilage injury and posttraumatic osteoarthritis by attenuating Piezo-mediated cartilage mechanotransduction of injurious strains.Item Open Access The channel of death.(The Journal of cell biology, 2001-11-26) Degterev, A; Boyce, M; Yuan, JThe proapoptotic members of the Bcl-2 family have been proposed to participate in the formation of a channel that releases these apoptogenic factors when mitochondria receive apoptotic signals. A recent study provides the first direct, biophysical measurement of a potentially apoptosis-specific mitochondrial channel, which is regulated by Bcl-2 family members and may play a primary role in the release of the proapoptotic factors.