Browsing by Subject "Isothermal titration calorimetry"
Results Per Page
Sort Options
Item Open Access Evaluation of Complex Biocatalysis in Aqueous Solution. Part I: Efforts Towards a Biophysical Perspective of the Cellulosome; Part II: Experimental Determination of Methonium Desolvation Thermodynamics(2014) King, Jason RyanThe intricate interplay of biomolecules acting together, rather than alone, provides insight into the most basic of cellular functions, such as cell signaling, metabolism, defense, and, ultimately, the creation of life. Inherent in each of these processes is an evolutionary tendency towards increased efficiency by means of biolgocial synergy-- the ability of individual elements of a system to produce a combined effect that is different and often greater than the sum of the effects of the parts. Modern biochemists are challenged to find model systems to characterize biological synergy.
We discuss the multicomponent, enzyme complex the cellulosome as a model system of biological synergy. Native cellulosomes comprise numerous carbohydrate-active binding proteins and enzymes designed for the efficient degradation of plant cell wall matrix polysaccharides, namely cellulose. Cellulosomes are modular enzyme complexes, comparable to enzyme "legos" that may be readily constructed into multiple geometries by synthetic design. Cellulosomal enzymes provide means to measure protein efficiency with altered complex geometry through assay of enzymatic activity as a function of geometry.
Cellulosomes are known to be highly efficient at cellulose depolymerization, and current debates on the molecular origins of this efficiency suggest two related effects provide this efficiency: i) substrate targeting, which argues that the localization of the enzyme complex at the interface of insoluble cell wall polysaccharides facilitates substrate depolymerization; and ii) proximity effects, which describe the implicit benefit for co-localizing multiple enzymes with divergent substrate preferences on the activity of the whole complex.
Substrate targeting can be traced to the activity of a single protein, the cellulosomal scaffoldin cellulose binding module CBM3a that is thought to uniquely bind highly crystalline, insoluble cellulose. We introduce methods to develop a molecular understanding of the substrate preferences for CBM3a on soluble and insoluble cellulosic substrates. Using pivaloylysis of cellulose triacetate, we obtain multiple soluble cello-oligosaccharides with increasing degree of glucose polymerization (DP) from glucose (DP1) to cellodecaose (DP10) in high yield. Using calorimetry and centrifugal titrations, cello-oligosacharides were shown to not bind Clostridial cellulolyticum CMB3a. We developed AFM cantilever functionalization protocols to immobilize CBM3a and then probe the interfacial binding between CBM3a and a cellulose nanocrystal thin film using force spectroscopy. Specific binding at the interface was demonstrated in reference to a control protein that does not bind cellulose. The results indicate that i) CBM3a specifically binds nanocrystalline cellulose and ii) specific interfacial binding may be probed by force spectroscopy with the proper introduction of controls and blocking agents.
The question of enzyme proximity effects in the cellulosome must be answered by assaying the activity of cellulosomal cellulases in response to cellulosome geometry. The kinetic characterization of cellulases requires robust and reproducible assays to quantify functional cellulase content of from recombinant enzyme preparations. To facilitate the real-time routine assay of cellulase activity, we developed a custom synthesis of a fluorogenic cellulase substrate based on the cellohexaoside of Driguez and co-workers (vide infra). Two routes to synthesize a key thiophenyl glycoside building block were presented, with the more concise route providing the disaccharide in four steps from a commercial starting material. The disaccharide building blocks were coupled by chemical activation to yield the fully protected cellohexaoside over additional six steps. Future work will include the elaboration of this compound into an underivatized FRET-paired hexasaccharide and its subsequent use in cellulase activity assays.
This dissertation also covers an experimental system for the evaluation of methonium desolvation thermodynamics. Methonium (-N+Me3, Am) is an organic cation widely distributed in biological systems. The appearance of methonium in biological transmitters and receptors seems at odds with the large unfavorable desolvation free energy reported for tetramethylammonium (TMA+), a frequently utilized surrogate of methonium. We report an experimental system that facilitates incremental internalization of methonium within the molecular cavity of cucurbit[7]uril (CB[7]).
Using a combination of experimental and computational studies we show that the transfer of methonium from bulk water to the CB[7] cavity is accompanied by a remarkably small desolvation enthalpy of just 0.5±0.3 kcal*mol-1, a value significantly less endothermic than those values suggested from gas-phase model studies (+49.3 kcal*mol-1). More surprisingly, the incremental withdrawal of methonium surface from water produces a non- monotonic response in desolvation enthalpy. A partially desolvated state exists, in which a portion of the methonium group remains exposed to solvent. This structure incurs an increased enthalpic penalty of ~3 kcal*mol-1 compared to other solvation states. We attribute this observation to the pre- encapsulation de-wetting of the methonium surface. Together, our results offer a rationale for the wide biological distribution of methonium and suggest limitations to computational estimates of binding affinities based on simple parameterization of solvent-accessible surface area.
Item Open Access Investigations into Multivalent Ligand Binding Thermodynamics(2015) Watts, Brian EdwardVirtually all biologically relevant functions and processes are mediated by non-covalent, molecular recognition events, demonstrating astonishingly diverse affinities and specificities. Despite extensive research, the origin of affinity and specificity in aqueous solution - specifically the relationship between ligand binding thermodynamics and structure - remains remarkably obscure and is further complicated in the context of multivalent interactions. Multivalency describes the combinatorial interaction of multiple discrete epitopes across multiple binding surfaces where the association is considered as the sum of contributions from each epitope and the consequences of multivalent ligand assembly. Gaining the insight necessary to predictably influence biological processes with novel therapeutics begins with an understanding of the molecular basis of solution-phase interactions, and the thermodynamic parameters that follow from those interactions. Here we continue our efforts to understand the basis of aqueous affinity and the nature of multivalent additivity.
Multivalent additivity is the foundation of fragment-based drug discovery, where small, low affinity ligands are covalently assembled into a single high affinity inhibitor. Such systems are ideally suited for investigating the thermodynamic consequences of multivalent ligand assembly. In the first part of this work, we report the design and synthesis of a fragment-based ligand series for the Grb2-SH2 protein and thermodynamic evaluation of the low affinity ligand fragments compared to the intact, high affinity inhibitor by single and double displacement isothermal titration calorimetry (ITC). Interestingly, our investigations reveal positively cooperative multivalent additivity - a binding free energy of the full ligand greater than the sum of its constituent fragments - that is largely enthalpic in origin. These results contradict the most common theory of multivalent affinity enhancement arising from a "savings" in translational and rotational entropy. The Grb2-SH2 system reported here is the third distinct molecular system in which we have observed enthalpically driven multivalent enhancement of affinity.
Previous research by our group into similar multivalent affinity enhancements in protein-carbohydrate systems - the so-called "cluster glycoside effect" - revealed that evaluation of multivalent interactions in the solution-phase is not straightforward due to the accessibility of two disparate binding motifs: intramolecular, chelate-type binding and intermolecular, aggregative binding. Although a number of powerful techniques for evaluation of solution-phase multivalent interactions have been reported, these bulk techniques are often unable to differentiate between binding modes, obscuring thermodynamic interpretation. In the second part of this work, we report a competitive equilibrium approach to Molecular Recognition Force Microscopy (MRFM) for evaluation of ligand binding at the single-molecule level with potential to preclude aggregative associations. We have optimized surface functionalization strategies and MRFM experimental protocols to evaluate the binding constant of surface- and tip-immobilized single stranded DNA epitopes. Surprisingly, the monovalent affinity of an immobilized species is in remarkable agreement with the solution-phase affinity, suggesting the competitive equilibrium MRFM approach presents a unique opportunity to investigate the nature of multivalent additivity at the single molecule level.