Browsing by Subject "Knee Injuries"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access Are Weightbearing Restrictions Required After Microfracture for Isolated Chondral Lesions of the Knee? A Review of the Basic Science and Clinical Literature.(Sports health, 2021-03) Jain, Deeptee; Belay, Elshaday S; Anderson, John A; Garrett, William E; Lau, Brian CContext
A strict rehabilitation protocol is traditionally followed after microfracture, including weightbearing restrictions for 2 to 6 weeks. However, such restrictions pose significant disability, especially in a patient population that is younger and more active.Evidence acquisition
An extensive literature review was performed through PubMed and Google Scholar of all studies through December 2018 related to microfracture, including biomechanical, basic science, and clinical studies. For inclusion, clinical studies had to report weightbearing status and outcomes with a minimum 12-month follow-up.Study design
Clinical review.Level of evidence
Level 3.Results
Review of biomechanical and biology studies suggest new forming repair tissue is protected from shear forces of knee joint loading by the cartilaginous margins of the defect. This margin acts as a shoulder to maintain axial height and allow for tissue remodeling up to at least 12 months after surgery, well beyond current weight bearing restriction trends. A retrospective case-control study showed that weightbearing status postoperatively had no effect on clinical outcomes in patients who underwent microfracture for small chondral (<2 mm2) defects. In fact, 1 survey showed that many orthopaedic surgeons currently do not restrict weightbearing after microfracture.Conclusion
This clinical literature review suggests that weightbearing restrictions may not be required after microfracture for isolated tibiofemoral chondral lesions of the knee.Strength of recommendation taxonomy
C.Item Open Access Changes in serum and synovial fluid biomarkers after acute injury (NCT00332254).(Arthritis Res Ther, 2010) Catterall, Jonathan B; Stabler, Thomas V; Flannery, Carl R; Kraus, Virginia BINTRODUCTION: Acute trauma involving the anterior cruciate ligament is believed to be a major risk factor for the development of post-traumatic osteoarthritis 10 to 20 years post-injury. In this study, to better understand the early biological changes which occur after acute injury, we investigated synovial fluid and serum biomarkers. METHODS: We collected serum from 11 patients without pre-existing osteoarthritis from a pilot intervention trial (5 placebo and 6 drug treated) using an intra-articular interleukin-1 receptor antagonist (IL-1Ra) therapy, 9 of which also supplied matched synovial fluid samples at presentation to the clinic after acute knee injury (mean 15.2 ± 7.2 days) and at the follow-up visit for reconstructive surgery (mean 47.6 ± 12.4 days). To exclude patients with pre-existing osteoarthritis (OA), the study was limited to individuals younger than 40 years of age (mean 23 ± 3.5) with no prior history of joint symptoms or trauma. We profiled a total of 21 biomarkers; 20 biomarkers in synovial fluid and 13 in serum with 12 biomarkers measured in both fluids. Biomarkers analyzed in this study were found to be independent of treatment (P > 0.05) as measured by Mann-Whitney and two-way ANOVA. RESULTS: We observed significant decreases in synovial fluid (sf) biomarker concentrations from baseline to follow-up for (sf)C-Reactive protein (CRP) (P = 0.039), (sf)lubricin (P = 0.008) and the proteoglycan biomarkers: (sf)Glycosaminoglycan (GAG) (P = 0.019), and (sf)Alanine-Arginine-Glycine-Serine (ARGS) aggrecan (P = 0.004). In contrast, we observed significant increases in the collagen biomarkers: (sf)C-terminal crosslinked telopeptide type II collagen (CTxII) (P = 0.012), (sf)C1,2C (P = 0.039), (sf)C-terminal crosslinked telopeptide type I collagen (CTxI) (P = 0.004), and (sf)N-terminal telopeptides of type I collagen (NTx) (P = 0.008). The concentrations of seven biomarkers were significantly higher in synovial fluid than serum suggesting release from the signal knee: IL-1β (P < 0.0001), fetal aggrecan FA846 (P = 0.0001), CTxI (P = 0.0002), NTx (P = 0.012), osteocalcin (P = 0.012), Cartilage oligomeric matrix protein (COMP) (P = 0.0001) and matrix metalloproteinase (MMP)-3 (P = 0.0001). For these seven biomarkers we found significant correlations between the serum and synovial fluid concentrations for only CTxI (P = 0.0002), NTx (P < 0.0001), osteocalcin (P = 0.0002) and MMP-3 (P = 0.038). CONCLUSIONS: These data strongly suggest that the biology after acute injury reflects that seen in cartilage explant models stimulated with pro-inflammatory cytokines, which are characterized by an initial wave of proteoglycan loss followed by subsequent collagen loss. As the rise of collagen biomarkers in synovial fluid occurs within the first month after injury, and as collagen loss is thought to be irreversible, very early treatment with agents to either reduce inflammation and/or reduce collagen loss may have the potential to reduce the onset of future post-traumatic osteoarthritis. TRIAL REGISTRATION: The samples used in this study were derived from a clinical trial NCT00332254 registered with ClinicalTrial.gov.Item Open Access Select Biomarkers on the Day of Anterior Cruciate Ligament Reconstruction Predict Poor Patient-Reported Outcomes at 2-Year Follow-Up: A Pilot Study.(BioMed research international, 2018-01) Lattermann, Christian; Conley, Caitlin E-W; Johnson, Darren L; Reinke, Emily K; Huston, Laura J; Huebner, Janet L; Chou, Ching-Heng; Kraus, Virginia B; Spindler, Kurt P; Jacobs, Cale ABackground:The majority of patients develop posttraumatic osteoarthritis within 15 years of anterior cruciate ligament (ACL) injury. Inflammatory and chondrodegenerative biomarkers have been associated with both pain and the progression of osteoarthritis; however, it remains unclear if preoperative biomarkers differ for patients with inferior postoperative outcomes. Hypothesis/Purpose:The purpose of this pilot study was to compare biomarkers collected on the day of ACL reconstruction between patients with "good" or "poor" 2-year postoperative outcomes. We hypothesized that inflammatory cytokines and chondrodegenerative biomarker concentrations would be significantly greater in patients with poorer outcomes. Study Design:Prospective cohort design. Methods:22 patients (9 females, 13 males; age = 19.5 ± 4.1 years; BMI = 24.1 ± 3.6 kg/m2) previously enrolled in a randomized trial evaluating early anti-inflammatory treatment after ACL injury. Biomarkers of chondrodegeneration and inflammation were assessed from synovial fluid (sf) samples collected on the day of ACL reconstruction. Participants completed Knee Injury and Osteoarthritis Outcome Score (KOOS) and International Knee Documentation Committee (IKDC) questionnaires two years following surgery. Patients were then categorized based on whether their KOOS Quality of Life (QOL) score surpassed the Patient Acceptable Symptom State (PASS) threshold of 62.5 points or the IKDC PASS threshold of 75.9 points. Results:Patients that failed to reach the QOL PASS threshold after surgery (n = 6, 27%) had significantly greater sf interleukin-1 alpha (IL-1α; p = 0.004), IL-1 receptor antagonist (IL-1ra; p = 0.03), and matrix metalloproteinase-9 (MMP-9; p = 0.01) concentrations on the day of surgery. Patients that failed to reach the IKDC PASS threshold (n = 9, 41%) had significantly greater sf IL-1α (p = 0.02). Conclusion:These pilot data suggest that initial biochemical changes after injury may be an indicator of poor outcomes that are not mitigated by surgical stabilization alone. Biological adjuvant treatment in addition to ACL reconstruction may be beneficial; however, these data should be used for hypothesis generation and more definitive randomized clinical trials are necessary.Item Open Access Targeting pro-inflammatory cytokines following joint injury: acute intra-articular inhibition of interleukin-1 following knee injury prevents post-traumatic arthritis.(Arthritis Res Ther, 2014-06-25) Furman, Bridgette D; Mangiapani, Daniel S; Zeitler, Evan; Bailey, Karsyn N; Horne, Phillip H; Huebner, Janet L; Kraus, Virginia B; Guilak, Farshid; Olson, Steven AINTRODUCTION: Post-traumatic arthritis (PTA) is a progressive, degenerative response to joint injury, such as articular fracture. The pro-inflammatory cytokines, interleukin 1(IL-1) and tumor necrosis factor alpha (TNF-α), are acutely elevated following joint injury and remain elevated for prolonged periods post-injury. To investigate the role of local and systemic inflammation in the development of post-traumatic arthritis, we targeted both the initial acute local inflammatory response and a prolonged 4 week systemic inflammatory response by inhibiting IL-1 or TNF-α following articular fracture in the mouse knee. METHODS: Anti-cytokine agents, IL-1 receptor antagonist (IL-1Ra) or soluble TNF receptor II (sTNFRII), were administered either locally via an acute intra-articular injection or systemically for a prolonged 4 week period following articular fracture of the knee in C57BL/6 mice. The severity of arthritis was then assessed at 8 weeks post-injury in joint tissues via histology and micro computed tomography, and systemic and local biomarkers were assessed in serum and synovial fluid. RESULTS: Intra-articular inhibition of IL-1 significantly reduced cartilage degeneration, synovial inflammation, and did not alter bone morphology following articular fracture. However, systemic inhibition of IL-1, and local or systemic inhibition of TNF provided no benefit or conversely led to increased arthritic changes in the joint tissues. CONCLUSION: These results show that intra-articular IL-1, rather than TNF-α, plays a critical role in the acute inflammatory phase of joint injury and can be inhibited locally to reduce post-traumatic arthritis following a closed articular fracture. Targeted local inhibition of IL-1 following joint injury may represent a novel treatment option for PTA.