Browsing by Subject "Land-atmosphere interaction"
- Results Per Page
- Sort Options
Item Open Access Coherent Structures in Land-Atmosphere Interaction(2010) Huang, JingLarge-scale coherent structures are systematically investigated in terms of their geometric attributes, importance toward describing turbulent exchange of energy, momentum and mass as well as their relationship to landscape features in the context of land-atmosphere interaction. In the first chapter, we present the motivation of this work as well as a background review of large-scale coherent structures in land-atmosphere interaction. In the second chapter, the methodology of large-eddy simulation (LES) and the proper orthogonal decomposition (POD) is introduced. LES was used to serve as a virtual laboratory to simulate typical scenarios in land-atmosphere interaction and the POD was used as the major technique to educe the coherent structures from turbulent flows in land-atmosphere interaction. In the third chapter, we justify the use of the LES to simulate the realistic coherent structures in the atmospheric boundary layer (ABL) by comparing results obtained from LES of the ABL and direct numerical simulation (DNS) of channel flow. In the fourth chapter, we investigate the effects of a wide range of vegetation density on the coherent structures within the air space within and just above the canopy (the so-called canopy sublayer, CSL). The fifth chapter presents an analysis of the coherent structures across a periodic forest-clearing-forest transition in the steamwise direction. The sixth chapter focuses on the role of coherent structures in explaining scalar dissimilarity in the CSL. The seventh chapter summarizes this dissertation and provides suggestions for future study.
Item Open Access Land-atmosphere Interaction: from Atmospheric Boundary Layer to Soil Moisture Dynamics(2015) Yin, JunAccurate modeling of land-atmosphere interaction would help us understand the persistent weather conditions and further contribute to the skill of seasonal climate prediction. In this study, seasonal variations in radiation and precipitation forcing are included in a stochastic soil water balance model to explore the seasonal evolution of soil moisture probabilistic structure. The theoretical results show soil moisture tends to exhibit bimodal behavior only in summer when there are strong positive feedback from soil moisture to subsequent rainfall. Besides the statistical analysis of soil moisture – rainfall feedback, simplified mixed-layer models, coupled with soil-plant-atmosphere continuum, are also used to study heat flux partitioning, cloud initiation, and strength of moist convection. Approximate analytical solutions to the mixed-layer model are derived by applying Penman-Monteith approach, which help explain the roles of equilibrium evaporation and vapor pressure deficit in controlling the diurnal evolution of boundary layer. Results from mixed-layer model also define four regimes for possible convection in terms of cloud/no-cloud formation and low/high convection intensity. Finally, cloud-topped mixed-layer model is developed to simulate the boundary-layer dynamics after the cloud formation, when the evaporative and radiative cooling other than surface heat flux may significantly contribute to the growth of the boundary layer.