Browsing by Subject "Landmine detection"
Results Per Page
Sort Options
Item Open Access Exploiting Multi-Look Information for Landmine Detection in Forward Looking Infrared Video(2013) Malof, JordanForward Looking Infrared (FLIR) cameras have recently been studied as a sensing modality for use in landmine detection systems. FLIR-based detection systems benefit from larger standoff distances and faster rates of advance than other sensing modalities, but they also present significant challenges for detection algorithm design. FLIR video typically yields multiple looks at each object in the scene, each from a different camera perspective. As a result each object in the scene appears in multiple video frames, and each time at a different shape and size. This presents questions about how best to utilize such information. Evidence in the literature suggests such multi-look information can be exploited to improve detection performance but, to date, there has been no controlled investigation of multi-look information in detection. Any results are further confounded because no precise definition exists for what constitutes multi-look information. This thesis addresses these problems by developing a precise mathematical definition of "a look", and how to quantify the multi-look content of video data. Controlled experiments are conducted to assess the impact of multi-look information on FLIR detection using several popular detection algorithms. Based on these results two novel video processing techniques are presented, the plan-view framework and the FLRX algorithm, to better exploit multi-look information. The results show that multi-look information can have a positive or negative impact on detection performance depending on how it is used. The results also show that the novel algorithms presented here are effective techniques for analyzing video and exploiting any multi-look information to improve detection performance.
Item Open Access Hierarchical Bayesian Learning Approaches for Different Labeling Cases(2015) Manandhar, AchutThe goal of a machine learning problem is to learn useful patterns from observations so that appropriate inference can be made from new observations as they become available. Based on whether labels are available for training data, a vast majority of the machine learning approaches can be broadly categorized into supervised or unsupervised learning approaches. In the context of supervised learning, when observations are available as labeled feature vectors, the learning process is a well-understood problem. However, for many applications, the standard supervised learning becomes complicated because the labels for observations are unavailable as labeled feature vectors. For example, in a ground penetrating radar (GPR) based landmine detection problem, the alarm locations are only known in 2D coordinates on the earth's surface but unknown for individual target depths. Typically, in order to apply computer vision techniques to the GPR data, it is convenient to represent the GPR data as a 2D image. Since a large portion of the image does not contain useful information pertaining to the target, the image is typically further subdivided into subimages along depth. These subimages at a particular alarm location can be considered as a set of observations, where the label is only available for the entire set but unavailable for individual observations along depth. In the absence of individual observation labels, for the purposes of training standard supervised learning approaches, observations both above and below the target are labeled as targets despite substantial differences in their characteristics. As a result, the label uncertainty with depth would complicate the parameter inference in the standard supervised learning approaches, potentially degrading their performance. In this work, we develop learning algorithms for three such specific scenarios where: (1) labels are only available for sets of independent and identically distributed (i.i.d.) observations, (2) labels are only available for sets of sequential observations, and (3) continuous correlated multiple labels are available for spatio-temporal observations. For each of these scenarios, we propose a modification in a traditional learning approach to improve its predictive accuracy. The first two algorithms are based on a set-based framework called as multiple instance learning (MIL) whereas the third algorithm is based on a structured output-associative regression (SOAR) framework. The MIL approaches are motivated by the landmine detection problem using GPR data, where the training data is typically available as labeled sets of observations or sets of sequences. The SOAR learning approach is instead motivated by the multi-dimensional human emotion label prediction problem using audio-visual data, where the training data is available in the form of multiple continuous correlated labels representing complex human emotions. In both of these applications, the unavailability of the training data as labeled featured vectors motivate developing new learning approaches that are more appropriate to model the data.
A large majority of the existing MIL approaches require computationally expensive parameter optimization, do not generalize well with time-series data, and are incapable of online learning. To overcome these limitations, for sets of observations, this work develops a nonparametric Bayesian approach to learning in MIL scenarios based on Dirichlet process mixture models. The nonparametric nature of the model and the use of non-informative priors remove the need to perform cross-validation based optimization while variational Bayesian inference allows for rapid parameter learning. The resulting approach is highly generalizable and also capable of online learning. For sets of sequences, this work integrates Hidden Markov models (HMMs) into an MIL framework and develops a new approach called the multiple instance hidden Markov model. The model parameters are inferred using variational Bayes, making the model tractable and computationally efficient. The resulting approach is highly generalizable and also capable of online learning. Similarly, most of the existing approaches developed for modeling multiple continuous correlated emotion labels do not model the spatio-temporal correlation among the emotion labels. Few approaches that do model the correlation fail to predict the multiple emotion labels simultaneously, resulting in latency during testing, and potentially compromising the effectiveness of implementing the approach in real-time scenario. This work integrates the output-associative relevance vector machine (OARVM) approach with the multivariate relevance vector machine (MVRVM) approach to simultaneously predict multiple emotion labels. The resulting approach performs competitively with the existing approaches while reducing the prediction time during testing, and the sparse Bayesian inference allows for rapid parameter learning. Experimental results on several synthetic datasets, benchmark datasets, GPR-based landmine detection datasets, and human emotion recognition datasets show that our proposed approaches perform comparably or better than the existing approaches.
Item Open Access Information-Based Sensor Management for Static Target Detection Using Real and Simulated Data(2009) Kolba, Mark PhilipIn the modern sensing environment, large numbers of sensor tasking decisions must be made using an increasingly diverse and powerful suite of sensors in order to best fulfill mission objectives in the presence of situationally-varying resource constraints. Sensor management algorithms allow the automation of some or all of the sensor tasking process, meaning that sensor management approaches can either assist or replace a human operator as well as ensure the safety of the operator by removing that operator from a dangerous operational environment. Sensor managers also provide improved system performance over unmanaged sensing approaches through the intelligent control of the available sensors. In particular, information-theoretic sensor management approaches have shown promise for providing robust and effective sensor manager performance.
This work develops information-theoretic sensor managers for a general static target detection problem. Two types of sensor managers are developed. The first considers a set of discrete objects, such as anomalies identified by an anomaly detector or grid cells in a gridded region of interest. The second considers a continuous spatial region in which targets may be located at any point in continuous space. In both types of sensor managers, the sensor manager uses a Bayesian, probabilistic framework to model the environment and tasks the sensor suite to make new observations that maximize the expected information gain for the system. The sensor managers are compared to unmanaged sensing approaches using simulated data and using real data from landmine detection and unexploded ordnance (UXO) discrimination applications, and it is demonstrated that the sensor managers consistently outperform the unmanaged approaches, enabling targets to be detected more quickly using the sensor managers. The performance improvement represented by the rapid detection of targets is of crucial importance in many static target detection applications, resulting in higher rates of advance and reduced costs and resource consumption in both military and civilian applications.
Item Open Access Noisefield Estimation, Array Calibration and Buried Threat Detection in the Presence of Diffuse Noise(2019) Bjornstad, Joel NilsOne issue associated with all aspects of the signal processing and decision making fields is that signals of interest are corrupted by noise. This work specifically considers scenarios where the primary noise source is external to an array of receivers and is diffuse. Spatially diffuse noise is considered in three scenarios: noisefield estimation, array calibration using diffuse noise as a source of opportunity, and detection of buried threats using Ground Penetrating Radar (GPR).
Modeling the ocean acoustic noise field is impractical as the noise seen by a receiver is dependent on the position of distant shipping (a major contributing source of low frequency noise) as well as the temperature, pressure, salinity and bathymetry of the ocean. Measuring the noise field using a standard towed array is also not practical due the inability of a line array to distinguish signals arriving at different elevations as well the presence of the well-known left/right ambiguity. A method to estimate the noisefield by fusing data from a traditional towed array and two small-aperture planar arrays is developed. The resulting noise field estimates can be used to produce synthetic covariance matrices that exhibit parity performance with measured covariance matrices when used in a Matched Subspace Detector.
For a phased array to function effectively, the positions of the array elements must be well calibrated. Previous efforts in the literature have primarily focused on use of discrete sources for calibration. The approach taken here focuses on using spatially oversampled, overlapping sub-arrays. The distance between elements is determine using The geometry of each individual sub-array is determined using Maximum Likelihood estimates of the interelement distances and determining the geometry of each sub array using Multidimensional Scaling. The overlapping sub-arrays are then combined into a single array. The algorithm developed in this work performs well in simulation. Limitations in the experimental setup preclude drawing firm conclusions based on an in-air test of the algorithm.
Ground penetrating radar (GPR) is one of the most successful methods to detect landmines and other buried threats. GPR images, however, are very noisy as the propagation path through soil is quite complex. It is a challenging problem to classify GPR images as threats or non-threats. Successful buried threat classification algorithm rely on a handcrafted feature descriptor paired with a machine learning classifier. In this work the state-of-the-art Spatial Edge Descriptor (SED) feature was implemented as a neural network. This implementation allows the feature and the classifier to be trained simultaneously and expanded with minimal intervention from a designer. Impediments to training this novel network were identified and a modified network proposed that surpasses the performance of the baseline SED algorithm.
These cases demonstrate the practicality of mitigating or using diffuse background noise to achieve desired engineering results.
Item Open Access Nonparametric Bayesian Context Learning for Buried Threat Detection(2012) Ratto, Christopher RalphThis dissertation addresses the problem of detecting buried explosive threats (i.e., landmines and improvised explosive devices) with ground-penetrating radar (GPR) and hyperspectral imaging (HSI) across widely-varying environmental conditions. Automated detection of buried objects with GPR and HSI is particularly difficult due to the sensitivity of sensor phenomenology to variations in local environmental conditions. Past approahces have attempted to mitigate the effects of ambient factors by designing statistical detection and classification algorithms to be invariant to such conditions. These methods have generally taken the approach of extracting features that exploit the physics of a particular sensor to provide a low-dimensional representation of the raw data for characterizing targets from non-targets. A statistical classification rule is then usually applied to the features. However, it may be difficult for feature extraction techniques to adapt to the highly nonlinear effects of near-surface environmental conditions on sensor phenomenology, as well as to re-train the classifier for use under new conditions. Furthermore, the search for an invariant set of features ignores that possibility that one approach may yield best performance under one set of terrain conditions (e.g., dry), and another might be better for another set of conditions (e.g., wet).
An alternative approach to improving detection performance is to consider exploiting differences in sensor behavior across environments rather than mitigating them, and treat changes in the background data as a possible source of supplemental information for the task of classifying targets and non-targets. This approach is referred to as context-dependent learning.
Although past researchers have proposed context-based approaches to detection and decision fusion, the definition of context used in this work differs from those used in the past. In this work, context is motivated by the physical state of the world from which an observation is made, and not from properties of the observation itself. The proposed context-dependent learning technique therefore utilized additional features that characterize soil properties from the sensor background, and a variety of nonparametric models were proposed for clustering these features into individual contexts. The number of contexts was assumed to be unknown a priori, and was learned via Bayesian inference using Dirichlet process priors.
The learned contextual information was then exploited by an ensemble on classifiers trained for classifying targets in each of the learned contexts. For GPR applications, the classifiers were trained for performing algorithm fusion For HSI applications, the classifiers were trained for performing band selection. The detection performance of all proposed methods were evaluated on data from U.S. government test sites. Performance was compared to several algorithms from the recent literature, several which have been deployed in fielded systems. Experimental results illustrate the potential for context-dependent learning to improve detection performance of GPR and HSI across varying environments.
Item Open Access Statistical Models for Improving the Rate of Advance of Buried Target Detection Systems(2015) Malof, JordanThe ground penetrating radar (GPR) is one of the most popular and successful sensing modalities that have been investigated for buried target detection (BTD). GPR offers excellent detection performance, however, it is limited by a low rate of advance (ROA) due to its short sensing standoff distance. Standoff distance refers to the distance between the sensing platform and the location in front of the platform where the GPR senses the ground. Large standoff (high ROA) sensing modalities have been investigated as alternatives to the GPR but they do not (yet) achieve comparable detection performance. Another strategy to improve the ROA of the GPR is to combine it with a large standoff sensor within the same BTD system, and to leverage the benefits of the respective modalities. This work investigates both of the aforementioned approaches to improve the ROA of GPR systems using statistical modeling techniques. The first part of the work investigates two large-standoff modalities for BTD systems. New detection algorithms are proposed in both cases with the goal of improving their detection performance so that it is more comparable with the GPR. The second part of the work investigates two methods of combining the GPR with a large standoff modality in order to yield a system with greater ROA, but similar target detection performance. All proposed statistical modeling approaches in this work are tested for efficacy using real field-collected data from BTD systems. The experimental results show that each of the proposed methods contribute towards the goal of improving the ROA of BTD systems.