Browsing by Subject "Lung Diseases, Fungal"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Blastomyces helicus, a New Dimorphic Fungus Causing Fatal Pulmonary and Systemic Disease in Humans and Animals in Western Canada and the United States.(Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 2019-01) Schwartz, Ilan S; Wiederhold, Nathan P; Hanson, Kimberly E; Patterson, Thomas F; Sigler, LynneBackground
Blastomyces helicus (formerly Emmonsia helica) is a dimorphic fungus first isolated from a man with fungal encephalitis in Alberta, Canada. The geographic range, epidemiology, and clinical features of disease are unknown.Methods
We reviewed human and veterinary isolates of B. helicus identified among Blastomyces and Emmonsia isolates at the University of Alberta Microfungus Collection and Herbarium, University of Texas Health San Antonio's Fungus Testing Laboratory, and Associated Regional and University Pathologists Laboratories. Isolates were selected based on low Blastomyces dermatitidis DNA probe values and/or atypical morphology. Species identification was confirmed for most isolates by DNA sequence analysis of the internal transcribed spacer with or without D1/D2 ribosomal RNA regions. Epidemiological and clinical data were analyzed.Results
We identified isolates from 10 human and 5 veterinary cases of B. helicus infection; all were referred from western regions of Canada and the United States. Isolates remained sterile in culture, producing neither conidia nor sexual spores in the mycelial phase, but often producing coiled hyphae. Isolates were most frequently cultured from blood and bronchoalveolar lavage in humans and lungs in animals. Most infected persons were immunocompromised. Histopathological findings included pleomorphic, small or variably sized yeast-like cells, with single or multiple budding, sometimes proliferating to form short, branching, hyphal-like elements. Disease carried a high case-fatality rate.Conclusions
Blastomyces helicus causes fatal pulmonary and systemic disease in humans and companion animals. It differs from B. dermatitidis in morphological presentation in culture and in histopathology, by primarily affecting immunocompromised persons, and in a geographic range that includes western regions of North America.Item Open Access Cryptococcal cell morphology affects host cell interactions and pathogenicity.(PLoS Pathog, 2010-06-17) Okagaki, Laura H; Strain, Anna K; Nielsen, Judith N; Charlier, Caroline; Baltes, Nicholas J; Chrétien, Fabrice; Heitman, Joseph; Dromer, Françoise; Nielsen, KirstenCryptococcus neoformans is a common life-threatening human fungal pathogen. The size of cryptococcal cells is typically 5 to 10 microm. Cell enlargement was observed in vivo, producing cells up to 100 microm. These morphological changes in cell size affected pathogenicity via reducing phagocytosis by host mononuclear cells, increasing resistance to oxidative and nitrosative stress, and correlated with reduced penetration of the central nervous system. Cell enlargement was stimulated by coinfection with strains of opposite mating type, and ste3aDelta pheromone receptor mutant strains had reduced cell enlargement. Finally, analysis of DNA content in this novel cell type revealed that these enlarged cells were polyploid, uninucleate, and produced daughter cells in vivo. These results describe a novel mechanism by which C. neoformans evades host phagocytosis to allow survival of a subset of the population at early stages of infection. Thus, morphological changes play unique and specialized roles during infection.Item Open Access Let's talk about sex characteristics-As a risk factor for invasive fungal diseases.(Mycoses, 2022-06) Egger, Matthias; Hoenigl, Martin; Thompson, George R; Carvalho, Agostinho; Jenks, Jeffrey DBiological sex, which comprises differences in host sex hormone homeostasis and immune responses, can have a substantial impact on the epidemiology of infectious diseases. Comprehensive data on sex distributions in invasive fungal diseases (IFDs) are lacking. In this review, we performed a literature search of in vitro/animal studies, clinical studies, systematic reviews and meta-analyses of invasive fungal infections. Females represented 51.2% of invasive candidiasis cases, mostly matching the proportions of females among the general population in the United States and Europe (>51%). In contrast, other IFDs were overrepresented in males, including invasive aspergillosis (51% males), mucormycosis (60%), cryptococcosis (74%), coccidioidomycosis (70%), histoplasmosis (61%) and blastomycosis (66%). Behavioural variations, as well as differences related to biological sex, may only in part explain these findings. Further investigations concerning the association between biological sex/gender and the pathogenesis of IFDs are warranted.