Browsing by Subject "Lung Injury"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access A novel injury site-natural antibody targeted complement inhibitor protects against lung transplant injury.(American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons, 2021-06) Li, Changhai; Patel, Kunal; Tu, Zhenxiao; Yang, Xiaofeng; Kulik, Liudmila; Alawieh, Ali; Allen, Patterson; Cheng, Qi; Wallace, Caroline; Kilkenny, Jane; Kwon, Jennie; Gibney, Barry; Cantu, Edward; Sharma, Ashish; Pipkin, Mauricio; Machuca, Tiago; Emtiazjoo, Amir; Goddard, Martin; Holers, V Michael; Nadig, Satish; Christie, Jason; Tomlinson, Stephen; Atkinson, CarlComplement is known to play a role in ischemia and reperfusion injury (IRI). A general paradigm is that complement is activated by self-reactive natural IgM antibodies (nAbs), after they engage postischemic neoepitopes. However, a role for nAbs in lung transplantation (LTx) has not been explored. Using mouse models of LTx, we investigated the role of two postischemic neoepitopes, modified annexin IV (B4) and a subset of phospholipids (C2), in LTx. Antibody deficient Rag1-/- recipient mice were protected from LTx IRI. Reconstitution with either B4 or C2nAb restored IRI, with C2 significantly more effective than B4 nAb. Based on these information, we developed/characterized a novel complement inhibitor composed of single-chain antibody (scFv) derived from the C2 nAb linked to Crry (C2scFv-Crry), a murine inhibitor of C3 activation. Using an allogeneic LTx, in which recipients contain a full nAb repertoire, C2scFv-Crry targeted to the LTx, inhibited IRI, and delayed acute rejection. Finally, we demonstrate the expression of the C2 neoepitope in human donor lungs, highlighting the translational potential of this approach.Item Open Access Recurrent Use of VV ECMO in Refractory Hypoxemia After Penetrating Lung Injury and Multifocal Pneumonia in a Single Individual's ICU Stay.(Journal of cardiothoracic and vascular anesthesia, 2021-05) Usman, Asad Ali; Subramanian, Madhu; Raney, Catherine; Weaver, Jessica; Smith, Brian; Gutsche, Jacob; Vernick, William; Martin, Niels; Fernandez-Moure, JosephItem Open Access Respiratory Variation in Central Venous Pressure (CVP) to Guide Ventilatory Support in Coronavirus Disease 2019 (COVID-19)-Related Lung Injury.(Journal of cardiothoracic and vascular anesthesia, 2021-01) La Colla, Luca; Bronshteyn, Yuriy S; Mark, Jonathan BItem Open Access The role of stem cells in airway repair: implications for the origins of lung cancer.(Chin J Cancer, 2013-02) Mulvihill, Michael S; Kratz, Johannes R; Pham, Patrick; Jablons, David M; He, BiaoLung cancer is the leading cause of cancer-related deaths worldwide. Recently, advancements in our ability to identify and study stem cell populations in the lung have helped researchers to elucidate the central role that cells with stem cell-like properties may have in lung tumorigenesis. Much of this research has focused on the use of the airway repair model to study response to injury. In this review, we discuss the primary evidence of the role that cancer stem cells play in lung cancer development. The implications of a stem cell origin of lung cancer are reviewed, and the importance of ongoing research to identify novel therapeutic and prognostic targets is reiterated.Item Open Access Type 2 alveolar cells are stem cells in adult lung.(The Journal of clinical investigation, 2013-07) Barkauskas, Christina E; Cronce, Michael J; Rackley, Craig R; Bowie, Emily J; Keene, Douglas R; Stripp, Barry R; Randell, Scott H; Noble, Paul W; Hogan, Brigid LMGas exchange in the lung occurs within alveoli, air-filled sacs composed of type 2 and type 1 epithelial cells (AEC2s and AEC1s), capillaries, and various resident mesenchymal cells. Here, we use a combination of in vivo clonal lineage analysis, different injury/repair systems, and in vitro culture of purified cell populations to obtain new information about the contribution of AEC2s to alveolar maintenance and repair. Genetic lineage-tracing experiments showed that surfactant protein C-positive (SFTPC-positive) AEC2s self renew and differentiate over about a year, consistent with the population containing long-term alveolar stem cells. Moreover, if many AEC2s were specifically ablated, high-resolution imaging of intact lungs showed that individual survivors undergo rapid clonal expansion and daughter cell dispersal. Individual lineage-labeled AEC2s placed into 3D culture gave rise to self-renewing "alveolospheres," which contained both AEC2s and cells expressing multiple AEC1 markers, including HOPX, a new marker for AEC1s. Growth and differentiation of the alveolospheres occurred most readily when cocultured with primary PDGFRα⁺ lung stromal cells. This population included lipofibroblasts that normally reside close to AEC2s and may therefore contribute to a stem cell niche in the murine lung. Results suggest that a similar dynamic exists between AEC2s and mesenchymal cells in the human lung.