Browsing by Subject "MATERNAL INHERITANCE"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Deciphering the origins of apomictic polyploids in the Cheilanthes yavapensis complex (Pteridaceae).(American journal of botany, 2009-09) Grusz, AL; Windham, MD; Pryer, KMDeciphering species relationships and hybrid origins in polyploid agamic species complexes is notoriously difficult. In this study of cheilanthoid ferns, we demonstrate increased resolving power for clarifying the origins of polyploid lineages by integrating evidence from a diverse selection of biosystematic methods. The prevalence of polyploidy, hybridization, and apomixis in ferns suggests that these processes play a significant role in their evolution and diversification. Using a combination of systematic approaches, we investigated the origins of apomictic polyploids belonging to the Cheilanthes yavapensis complex. Spore studies allowed us to assess ploidy levels; plastid and nuclear DNA sequencing revealed evolutionary relationships and confirmed the putative progenitors (both maternal and paternal) of taxa of hybrid origin; enzyme electrophoretic evidence provided information on genome dosage in allopolyploids. We find here that the widespread apomictic triploid, Cheilanthes lindheimeri, is an autopolyploid derived from a rare, previously undetected sexual diploid. The apomictic triploid Cheilanthes wootonii is shown to be an interspecific hybrid between C. fendleri and C. lindheimeri, whereas the apomictic tetraploid C. yavapensis is comprised of two cryptic and geographically distinct lineages. We show that earlier morphology-based hypotheses of species relationships, while not altogether incorrect, only partially explain the complicated evolutionary history of these ferns.Item Open Access Phylogeny, divergence time estimates, and phylogeography of the diploid species of the polypodium vulgare complex (Polypodiaceae)(Systematic Botany, 2014-01-01) Sigel, EM; Windham, MD; Haufler, CH; Pryer, KM© 2014 by the American Society of Plant Taxonomists. The Polypodium vulgare complex (Polypodiaceae) comprises a well-studied group of fern taxa whose members are cryptically differentiated morphologically and have generated a confusing and highly reticulate species cluster. Once considered a single species spanning much of northern Eurasia and North America, P. vulgare has been segregated into 17 diploid and polyploid taxa as a result of cytotaxonomic work, hybridization experiments, and isozyme studies conducted during the 20th century. Despite considerable effort, however, the evolutionary relationships among the diploid members of the P. vulgare complex remain poorly resolved. Here we infer a diploids-only phylogeny of the P. vulgare complex and related species to test previous hypotheses concerning relationships within Polypodium sensu stricto. Using sequence data from four plastid loci (atpA, rbcL, matK, and trnG-trnR), we recovered a monophyletic P. vulgare complex comprising four well-supported clades. The P. vulgare complex is resolved as sister to the Neotropical P. plesiosorum group and these, in turn, are sister to the Asian endemic Pleurosoriopsis makinoi. Using divergence time analyses incorporating previously derived age constraints and fossil data, we estimate an early Miocene origin for the P. vulgare complex and a late Miocene-Pliocene origin for the four major diploid lineages of the complex, with the majority of extant diploid species diversifying from the late Miocene through the Pleistocene. Finally, we use our node age estimates to reassess previous hypotheses, and to propose new hypotheses, about the historical events that shaped the diversity and current geographic distribution of the diploid species of the P. vulgare complex.